共查询到20条相似文献,搜索用时 15 毫秒
1.
3.
4.
抗生素制药废水的处理 总被引:1,自引:0,他引:1
王强 《辽宁城乡环境科技》2006,26(3):49-51
锦州九泰制药废水属于不易生化类废水,废水量1000m^3/d,污水站总投资140万元。本文阐述了该工程的水质、预处理、生化处理工艺、活性污泥的培养与驯化及运行效果与设计特点。 相似文献
5.
介绍了采用MBR工艺技术处理植物药厂废水的工程实例。当进水CODCr为1000—2000mg/L时,出水可达到或优于GB8978—1996《污水综合排放标准》表4一级标准。 相似文献
6.
MBR工艺处理制药废水 总被引:1,自引:0,他引:1
介绍了采用MBR工艺技术处理植物药厂废水的工程实例。当进水CODCr为1000—2000mg/L时,出水可达到或优于GB8978—1996《污水综合排放标准》表4一级标准。 相似文献
7.
8.
9.
本文采用生物吸附再生曝气法处理SMZ、TMP和PNCT混合制药废水,用28升小型曝气装置,活性污泥经培养驯化后,连续稳定运行半年多时间.进水CODcr1200-1700mg/l,BOD_5250-800mg/l,HRT为17-21h,出水CODcr平均去除率81%,BOD_5平均去除率94%;胺基物和硝基物去除率也稳定在90%以上,取得了比较明显的去除效果. 相似文献
10.
11.
12.
制药行业具有工艺流程较复杂、使用的原料种类多、副产物多、物耗能耗大、废水排放量大、水质成分复杂等特点,所以科学的工程分析,可行的环境影响减缓措施在制药行业环境影响评价中至关重要。本文以头孢类无菌原料药项目为例,分析和探讨了制药行业生产特点及原料使用状况,工程分析的重点和方法,确定水污染因子及产生节点,提出保证水污染物达标排放的措施与对策。 相似文献
13.
14.
实验研究臭氧氧化法处理生产抗生素(水样A)、阿莫西林(水样B)、及某未知药品(水样C)的三种制药废水CODCr去除效果。结果表明:臭氧对这三种制药废水处理效果均有一定效果,能够改善废水的可生化性。分别取定量水样于量筒中稀释,用未知浓度的臭氧气处理30min,每隔5min取样一次,分别测定水样的色度、浊度、COD和pH等因素。 相似文献
15.
16.
17.
18.
结合工程实际采用水解酸化-SBR工艺处理制药废水,处理水量为2 000 m3/d。SBR对CODcr的处理率稳定在92.2%~95.8%间,平均为94.23%,对氨氮的去除率在82.7%~97.6%,平均去除率达到90.73%。水解酸化-SBR稳定运行后,系统出水各项指标均达到国家《污水综合排放标准》(8978-1996)二级排放标准。运行结果表明,SBR运行最佳参数为:曝气时间8小时,污泥负荷控制0.23~0.28(kg CODcr/kg MLSS.d),温度26℃~30℃。该工艺用于处理高浓度制药废水效果稳定,耐冲击负荷高。 相似文献
19.
《环境工程》2016,(Z1)
研究了湿式氧化处理对模拟制药废水的处理效果,并探究其对后续生化处理效果的影响。实验使用的模拟头孢制药废水含有1.5 g/L的7-ACA、0.5 g/L的头孢曲松钠以及1 m L/L的DMF,COD平均浓度为2 650 mg/L。实验的湿式氧化部分采用了WAO和WPO两种工艺,后续生化处理使用SBR工艺。实验结果得出,WAO工艺的最优工况为:温度210℃、p H=7、氧气分压2 MPa、反应时间3 h,得出的COD去除率为67.8%;WPO工艺的最优工况为:温度150℃、p H=7、双氧水投量为计算理论值、反应时间1 h,得出的COD去除率为70.8%。经湿式氧化工艺处理后的模拟废水再进入SBR反应器,出水COD去除率可达80%,并且SBR的负荷也得到了提高。 相似文献
20.
隔油-共沉淀-Fenton预处理制药废水 总被引:1,自引:0,他引:1
采用隔油-共沉淀-Fenton法对含有大量的苯、甲苯、铝及苯甲酮的制药废水进行处理。经隔油处理,COD由147 490.8 mg/L降至139 518.4 mg/L,后通过调节pH值来去除大部分的铝离子,pH=7时效果最佳,COD大约降至10 000 mg/L。Fenton最佳氧化条件为:pH为7,H2O2的投加量为1.6 g/L,H2O2和Fe2+的投加量比为14,反应去除时间为5 h,在此条件下COD降为840 mg/L,去除效率为91.6%;Fenton氧化预处理后废水的可生化性也得到较大提高。 相似文献