首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
根据青岛国家基本气象站2014年-2016年的气温资料,青岛大气成分站的2014年-2016年能见度、PM_(2.5)资料,针对PM_(2.5)与能见度、温度进行相关性分析,以及PM_(2.5)随季节分布规律及成因分析。结果表明,PM_(2.5)与能见度成强负相关性关系;温度与PM_(2.5)成强正相关性,并呈现出一定跟随性,这为以后定量计算PM_(2.5)的温度影响因子及预测PM_(2.5)浓度提供了依据;PM_(2.5)浓度分布与季节成规律性分布,冬春季节PM_(2.5)浓度高,能见度低;夏季高温多雨,PM_(2.5)浓度低,能见度高。  相似文献   

2.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。  相似文献   

3.
北京市PM2.5时空分布特征及其与PM10关系的时空变异特征   总被引:1,自引:0,他引:1  
PM_(2.5)时空分布特征及其与其它污染物的相关关系是PM_(2.5)时空统计分析的主要研究内容.然而,现有的方法直接从监测站点的角度对时空分布特征进行分析,难以有效地揭示PM_(2.5)浓度的聚集分布特征;同时,常用的地理加权回归在对PM_(2.5)与其它污染物间关系进行建模的过程中,缺乏同时考虑时间异质性与空间异质性,从而不能准确地描述依赖关系的时空变异特征.为此,首先借助于空间聚类分析技术,对北京市2014年PM_(2.5)浓度的聚集结构进行探测,在此基础上,通过聚集结构来分析PM_(2.5)季节性时空分布特征.然后,利用地理时空加权回归对北京市PM_(2.5)与PM_(10)季节平均浓度间关系进行建模,依据回归结果分析PM_(2.5)-PM_(10)间关系的时空变异特征.实验结果表明,春夏季节PM_(2.5)污染程度及空间变异程度均低于秋冬季节,各季节PM_(2.5)浓度均表现为北部浓度低、南部浓度高的空间分布特征;地理时空加权回归具有更好的拟合效果,由回归系数进一步可发现,春夏季PM_(2.5)-PM_(10)相关性低于秋冬季PM_(2.5)-PM_(10)相关性;各季节均表现为西北部PM_(2.5)-PM_(10)的相关性高于东南部PM_(2.5)-PM_(10)的相关性.  相似文献   

4.
研究了内蒙古自治区2016年PM_(2.5)浓度时空分布规律及PM_(2.5)与其前体物之间的关系。结果表明,内蒙古自治区PM_(2.5)浓度具有一定的时空分布特征,并与气象条件、污染物排放及前体物二次转化均有关联。时间上,PM_(2.5)日浓度变化曲线呈双峰型分布,两个峰值时段分别为10:00—12:00、23:00—翌日01:00,PM_(2.5)月均浓度曲线呈"U"形分布,在8月最低;空间上,内蒙古自治区PM_(2.5)浓度由高到低的区域依次为中部、西部、东部;PM_(2.5)小时浓度与其前体物NO_2、SO_2小时浓度均为显著正相关,说明前体物对PM_(2.5)浓度变化影响显著。研究结论可为内蒙古自治区大气污染环境治理提供参考。  相似文献   

5.
中国PM2.5污染空间分布的社会经济影响因素分析   总被引:1,自引:0,他引:1  
段杰雄  翟卫欣  程承旗  陈波 《环境科学》2018,39(5):2498-2504
中国的细颗粒物(PM_(2.5))污染具有危害性强、覆盖范围大、空间分布不均匀的特点.本研究以2015年中国PM_(2.5)监测站点数据为基础,尝试结合空间分析的方法,对PM_(2.5)污染空间分布的社会经济影响因素进行分析.首先以省级行政区划为基本单元,选取Moran's I指数和局部自相关指数(LISA)分析PM_(2.5)在国家尺度上的分布特征.然后利用普通最小二乘回归模型(OLS)和地理加权回归模型(GWR)分析PM_(2.5)浓度的空间分布和各项社会经济指标的相关性.结果表明,GWR模型比OLS模型更好地揭示出PM_(2.5)浓度分布和各项因素之间的关系.PM_(2.5)浓度在空间分布上存在以京津冀为中心的高浓度聚集区向四周逐渐递减,在广西、四川等南部省份形成低浓度聚集区的空间分布结构.另外,森林覆盖率和人均电力消费量与PM_(2.5)浓度显著负相关,人均私家车保有量和PM_(2.5)浓度显著正相关,其中人均私家车保有量是对PM_(2.5)浓度影响最大的因素.  相似文献   

6.
为了降低天津市滨海新区中PM_(2.5)的污染,需要对天津市滨海新区PM_(2.5)污染的时空分布和影响因素进行研究。研究天津市滨海新区近年来PM_(2.5)的时空分布特征,并选取PM_(2.5)的相关指标,对天津市滨海新区PM_(2.5)污染影响因素进行分析。结果表明,在天津市滨海新区的冬季时,PM_(2.5)的质量浓度值最高,在滨海新区的夏季时,PM_(2.5)的质量浓度值最低。PM_(2.5)在天津市滨海新区昼间大气中的质量浓度低于夜间大气中的质量浓度。  相似文献   

7.
选取气溶胶光学厚度、海拔、年降水量、年均气温、年均风速、人口密度、GDP密度和NDVI作为影响因子,基于随机森林模型、特征重要性排序和偏依赖图技术,研究中国PM_(2.5)浓度空间分布的影响因素及其区域差异.结果表明:①与多元回归、广义可加模型和BP神经网络相比,随机森林模型估算的PM_(2.5)浓度精度最高,可用于PM_(2.5)污染的影响因素研究.②PM_(2.5)浓度随气溶胶光学厚度、人口密度和GDP密度的增加呈先上升后平稳的趋势,随降水、风速和NDVI的增加呈先下降后平稳的趋势,随海拔和气温的增加呈下降→上升→下降的趋势.③气溶胶光学厚度对PM_(2.5)浓度空间分布的影响最大,可解释37.96%的PM_(2.5)浓度空间分异;年降水量对PM_(2.5)浓度空间分布的影响最小,解释率仅为5.75%.④影响因子与PM_(2.5)浓度的关系存在空间异质性,同一影响因子对不同地理分区的PM_(2.5)浓度的影响程度有所不同.气溶胶光学厚度对华南地区PM_(2.5)浓度的空间分布影响最大,对东北地区影响最小.  相似文献   

8.
基于2013年12月和2014年全年宝鸡市8个自动空气质量监测子站的PM_(10)和PM_(2.5)的监测数据,探讨PM_(10)和PM_(2.5)的时间分布特征和空间分布特征。结果表明:PM_(10)的日平均浓度为118.23μg/m~3,全年中PM_(10)超过二级标准的天数为80 d,超标率为22%;PM_(2.5)的日平均浓度为68.93μg/m~3,全年中PM_(2.5)超过二级标准的天数为92 d,超标率为25%;PM_(10)和PM_(2.5)的浓度有明显的季节差异。PM_(2.5)和PM_(10)浓度由高到低的季节依次是冬季、春季、秋季和夏季;不同的监测点位中,解放军第三陆军医院监测点位的PM_(10)和PM_(2.5)浓度对于宝鸡市大气颗粒物的污染贡献率相对其他点位较高,主要是其地理位置导致的。  相似文献   

9.
APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析   总被引:1,自引:0,他引:1  
为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间.  相似文献   

10.
大气悬浮细颗粒物PM_(2.5)已成为中国各大城市的首要空气污染问题,快速了解其浓度及空间分布状况,对于控制PM_(2.5)质量浓度、提高空气质量具有重要意义。以石河子市为研究区,利用HJ-1 CCD影像,通过暗像元法、6S模型反演气溶胶光学厚度,结合DTF-6太阳光度计数据进行验证,然后根据AOD与PM_(2.5)之间的统计关系建立符合研究区实际特点的PM_(2.5)反演参数和算法,建立遥感反演模型获取PM_(2.5)的空间分布。结果表明:PM_(2.5)浓度反演结果的平均绝对误差为0.93 ug/m3,反演精度较高,石河子市PM_(2.5)的空间分布呈现北低南高,西低东高的特点。  相似文献   

11.
根据包头市2015—2016年PM_(2.5)监测数据及气象数据,分析了包头市PM_(2.5)时空分布特征及PM_(2.5)与气象因子之间的关系。结果表明:包头市PM_(2.5)浓度在12月达到最大,日变化曲线为双峰型;在空间上PM_(2.5)浓度由西南向东北方向递减,且浓度梯度变化明显;气温、相对湿度、降雨量、风速等气象因子对PM_(2.5)浓度有显著影响。  相似文献   

12.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

13.
基于地理加权模型的我国冬季PM2.5遥感估算方法研究   总被引:3,自引:0,他引:3  
为了分析冬季我国区域范围内近地面PM_(2.5)质量浓度时空分布特征,根据卫星遥感反演PM_(2.5)质量浓度的基本原理,综合考虑我国不同地区的PM_(2.5)污染特征的空间差异性,基于卫星遥感、气象模式资料及同期地面观测的PM_(2.5)质量浓度数据采用地理加权模型进行回归分析,研究构建了我国区域范围内近地面PM_(2.5)遥感反演模型.结果表明:在冬季暗像元反演AOD算法受限制的情况下,深蓝算法产品可以一定程度上弥补暗像元算法的不足,将二者有效融合能同时提高AOD产品的精度和空间覆盖度;利用地理加权回归模型进行全国区域PM_(2.5)遥感估算,既能体现全国PM_(2.5)时空分布的全局变化特性,又能从局部体现全国PM_(2.5)组分、污染程度及垂直分布结构特征的空间差异特性,基于地理加权回归模型的PM_(2.5)遥感反演结果(R2=0.7)明显优于多元线性回归模型(R2=0.56);2013年12月—2014年2月份全国PM_(2.5)空间分布呈现明显的区域特征,PM_(2.5)浓度较高的地方主要分布在华北南部、长三角中部和北部、华中东部及四川东部等地,西部和北部地区PM_(2.5)污染相对较轻;从时间变化来看,全国冬季12月份PM_(2.5)污染最重,1月份次之,2月份相对最低.这可为全国PM_(2.5)区域联防联控提供有力的信息支撑.  相似文献   

14.
通过现场观测研究西安市和平路街谷内的PM_(2.5)浓度时空变化特征及其影响因素.在2015年4月8~10日进行了街谷内PM_(2.5)浓度、车流量、风速、温湿度等参数的日变化规律和PM_(2.5)浓度空间分布规律的观测实验.观测结果显示西安市和平路街谷内PM_(2.5)浓度值较高,日间PM_(2.5)浓度呈"凹"字形变化,早晚PM_(2.5)浓度相对较高,在16:00前后PM_(2.5)浓度到达一天当中的最低值.PM_(2.5)浓度与温度、湿度有良好的相关性,对应R2值分别达到0.75和0.81.静风天气条件下,由温度变化引起的大气边界层伸缩运动被发现是影响街谷内污染物扩散的主要因素.  相似文献   

15.
精确识别污染物浓度的空间分布是进行区域大气污染防治的重要基础。利用MODIS卫星数据,采用基于地面气象和环境空气质量监测站点观测数据为基础的反演模型,反演获取2013年12月珠三角地区典型大气污染过程1 km分辨率的PM_(2.5)浓度数据,对比分析遥感反演及基于环境空气质量监测站点观测数据的空间插值方法对区域、城市和乡镇尺度PM_(2.5)浓度空间分布特征的再现效果差异。结果表明,珠三角地区PM_(2.5)遥感反演结果与地面观测数据的相关性达到0.74,相关性水平较好,遥感反演结果可描述区域、城市和乡镇尺度上PM_(2.5)污染浓度的空间分布特征,识别不同空间位置的污染程度差异;基于站点观测数据的空间插值方法对PM_(2.5)浓度空间分布特征的再现能力有限,在区域尺度PM_(2.5)浓度空间分布特征分析时效果尚可,在站点有限的城市和乡镇尺度分析中效果不佳,容易产生对高浓度污染地区的误判;在需要利用站点观测数据分析区域尺度PM_(2.5)浓度空间分布特征时,析取克里金、反距离权重或径向基函数插值方法的效果相对较好。  相似文献   

16.
文章基于2016~2017年武汉城市圈各城市站点PM_(2.5)逐时监测数据,主要利用空间自相关、核密度法和空间计量模型,从不同的时空尺度来分析武汉城市圈PM_(2.5)的空间分布格局和影响因素。结果表明:在年尺度上,2016~2017年武汉城市圈PM_(2.5)浓度整体上呈下降趋势,空间分布上呈中东部高、西南部低、局地略有突出的分布特征并表现出明显的空间集聚性,城市圈内部各城市PM_(2.5)污染浓度差异明显,且各城市之间存在一定的空间溢出效应;从年内尺度上看,武汉城市圈PM_(2.5)浓度总体上呈"U"字型分布,冬春季污染最为严重,秋季、夏季次之,且4个季节的PM_(2.5)浓度值存在较强的空间自相关性,表现出不同程度的空间集聚现象;从影响因素上看,无论是自然环境要素还是社会经济要素均对城市圈PM_(2.5)浓度变化起重要作用,按其贡献强度依次是温度民用汽车拥有量风速能源消费水平城镇化率第二产业占比湿度节能环保支出,而森林覆盖率和海拔高度对PM_(2.5)没有表现出明显的直接效应;从大气污染物本身关系上看,PM_(10)直接作用于PM_(2.5)的浓度变化,且起关键性的作用,CO和NO_2则主要是通过PM_(10)对PM_(2.5)浓度间接地产生影响,而O_3对PM_(2.5)浓度影响较小且呈负相关关系。  相似文献   

17.
北京2008奥运期间PM10的单颗粒形貌类型及生物活性研究   总被引:1,自引:2,他引:1  
邵龙义  宋晓焱  刘君霞  周林 《环境科学》2009,30(12):3448-3454
采集2008年北京奥运会期间大气PM_(10)和PM_(2.5)样品,计算质量浓度,得出奥运会期间大气污染水平.利用场发射扫描电镜(FESEM)和图像分析技术对PM_(10)和PM_(2.5)的形貌特征和粒度分布进行分析.同时应用质粒DNA 评价法研究了奥运会期间PM_(10)样品的生物活性.结果表明,奥运会期间可吸入颗粒物质量浓度日均值均符合国家2级标准,PM_(2.5)和PM_(10)的比值为0.63,以细粒子PM_(2.5)为主.奥运期间PM_(10)和PM_(2.5)样品的微观形貌主要为球形颗粒、烟尘集合体、不规则矿物和未知细颗粒,其中球形颗粒和未知细颗粒占有相当大的数量比例.PM_(10)和PM_(2.5)数量-粒度呈单峰分布,主要分布在0.1~0.4 μm范围内.PM_(10)的体积-粒度呈双峰分布,主要分布在0.4~0.5 μm和1~2.5 μm范围内,PM_(2.5)主要分布在1~2.5 μm范围内.质粒DNA 评价结果表明,北京2008奥运期间可吸入颗粒物生物活性明显降低,要达到20%的损伤需要的颗粒物剂量浓度在180 μg·mL~(-1)以上,明显高于2004年的63 μg·mL~(-1),可见奥运期间大气颗粒物对人体危害比往年减小.  相似文献   

18.
利用2014年北京市12个空气质量监测站的逐小时PM_(2.5)地面观测资料,以及Terra和Aqua卫星的MODIS气溶胶光学厚度(AOD)产品,在时间和空间数据匹配的基础上,研究了PM_(2.5)的5 h(10:00—14:00)和24 h(0:00—23:00)两种时段平均浓度及两颗卫星平均AOD的时空分布特征,并建立了AOD与不同时段平均PM_(2.5)浓度之间的回归模型.结果表明:PM_(2.5)的5 h平均浓度和24 h平均浓度值均在城区高、郊区低,最低值位于定陵站;匹配后逐时PM_(2.5)浓度的日变化呈"双峰型",最低值出现在下午,但北京西北部郊区的定陵和昌平镇站因局地山谷风环流和外部排放源的影响,其"双峰型"波动趋势较城区站偏弱,最低值出现在上午;AOD的空间分布特征与PM_(2.5)浓度分布一致,但在郊区由于污染水平分布不均,卫星采集的样本可能来自于周围的清洁大气,导致AOD的最小值在郊区站点明显低于城区站点;两颗卫星平均的AOD与5h PM_(2.5)平均浓度的决定系数高于AOD与24 h PM_(2.5)平均浓度的决定系数;AOD与PM_(2.5)的相关系数在城区高于郊区,郊区排放源分布不均和强的局地系统性环流是造成其相关系数低的重要原因.  相似文献   

19.
PM_(2.5)作为大气污染的一种,正受到社会越来越广泛的关注和研究,但大部分研究仅单独分析各样点PM_(2.5)浓度时间维度或空间维度特征,忽略了PM_(2.5)的时空维度变化。为综合考虑PM_(2.5)时空维度特征,该文以山东省2014年PM_(2.5)浓度监测数据为对象,建立PM_(2.5)时空变异模型,利用时空克里格法对山东省全年PM_(2.5)浓度进行时空预测,得到时空分布立方体数据,最后基于该数据,对山东省PM_(2.5)污染特征作出分析。结果表明,2014年山东省整体PM_(2.5)污染严重。在空间上,中西部地区PM_(2.5)浓度超过75μg/m~3的天数超过290 d,存在持续性高危污染,东部小于37.5μg/m~3的天数超过146 d,存在间歇性轻微污染,且从西至东,PM_(2.5)污染天数和程度逐渐降低,具有明显地域性污染特征;在时间上,PM_(2.5)浓度最高时间段为1、2、11和12月,最低为6-8月,各季节污染程度依次为:冬季秋季春季夏季。研究表明时空地统计方法能够有效地对空气质量进行时空预测,是挖掘更多的时空分布特征和信息,进行环境数据分析的有效手段。  相似文献   

20.
近年来,北京等特大城市在夏季也频发霾天气,在2013年7月的10 d 240 h中发生了3次完整的灰霾过程。基于逐时完整的131组3 023个PM_(2.5)浓度数据,与相关的气象资料进行关联分析,提出北京在夏季霾天气中PM_(2.5)浓度分布存在以下特征:(1)PM_(2.5)的浓度值分布不均匀;(2)在灰霾发生、持续及消散阶段,均存在着若干监测点,这些监测点的PM_(2.5)浓度值显著高于(或低于)其他监测点;(3)降雨对PM_(2.5)浓度值的降低具有明显作用;(4)微风、静风条件下,PM_(2.5)浓度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号