首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Our group previously demonstrated that carbon dioxide (CO2) levels in heavily occupied schools correlate with the levels of airborne bacterial markers. Since CO2 is derived from the room occupants, it was hypothesized that in schools, bacterial markers may be primarily increased in indoor air because of the presence of children; directly from skin microflora or indirectly, by stirring up dust from carpets and other sources. The purpose of this project was to test the hypothesis. Muramic acid (Mur) is found in almost all bacteria whereas 3-hydroxy fatty acids (3-OH FAs) are found only in Gram-negative bacteria. Thus Mur and 3-OH FA serve as markers to assess bacterial levels in indoor air (pmol m(-3)). In our previous school studies, airborne dust was collected only from occupied rooms. However, in the present study, additional dust samples were collected from the same rooms each weekend when unoccupied. Samples were also collected from outside air. The levels of dust, Mur and C10:0, C12:0, C14:0, and C16:0 3-OH FAs were each much higher (range 5-50 fold) in occupied rooms than in unoccupied school rooms. Levels in outdoor air were much lower than that of indoor air from occupied classrooms and higher than the levels in the same rooms when unoccupied. The mean CO2 concentrations were around 420 parts per million (ppm) in unoccupied rooms and outside air; and they ranged from 1017 to 1736 ppm in occupied rooms, regularly exceeding 800-1000 ppm, which are the maximum levels indicative of adequate indoor ventilation. This indicates that the children were responsible for the increased levels of bacterial markers. However, the concentration of Mur in dust was also 6 fold higher in occupied rooms (115.5 versus 18.2 pmole mg(-1)). This further suggests that airborne dust present in occupied and unoccupied rooms is quite distinct. In conclusion in unoccupied rooms, the dust was of environmental origin but the children were the primary source in occupied rooms.  相似文献   

2.
2-Ethyl-1-hexanol is a possibly causative chemical in sick building symptoms, although 2-ethyl-1-hexanol has received little attention as a hazardous substance in studies on indoor air pollution. Airborne 2-ethyl-1-hexanol concentrations were measured from 2002 to 2004 in 99 rooms of 42 non-domestic buildings in Nagoya, Japan. The diffusive sampling method is effective for the measurement of a low level of 2-ethyl-1-hexanol in indoor air. The geometric mean (geometric standard deviation) of 2-ethyl-1-hexanol concentrations was 16.5 (5.4) microg m(-3) in indoor air and 1.9 (2.2) microg m(-3) in outdoor air. The maximum concentration of 2-ethyl-1-hexanol in indoor air and outdoor air was 2709 microg m(-3) and 12.4 microg m(-3), respectively. Fewer rooms in a small number of new buildings showed high concentrations of 2-ethyl-1-hexanol, while low concentrations were observed in many rooms of these buildings as well as the other new buildings. The room-to-room concentrations of 2-ethyl-1-hexanol in each building exhibited a wide variation. The geometric mean of the 2-ethyl-1-hexanol concentrations was significantly higher for indoor air than for outdoor air (p < 0.01). The correlation of the 2-ethyl-1-hexanol concentrations between indoor and outdoor air was not significant. Mechanical ventilation was effective in the temporary reduction of indoor 2-ethyl-1-hexanol level. These results suggest that the predominant source of 2-ethyl-1-hexanol was indoor areas.  相似文献   

3.
Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h?1. The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors’ concentrations were found to be compared well with the experimentally measured values.  相似文献   

4.
Muramic acid (Mur) is found in bacterial peptidoglycan (PG) whereas 3-hydroxy fatty acids (3-OH FAs) are found in Gram-negative bacterial lipopolysaccharide (LPS). Thus Mur and 3-OH FAs serve as markers to assess bacterial levels in indoor air. An initial survey, in a school, demonstrated that the levels of dust, PG and LPS (pmol m(-3)) were each much higher in occupied rooms than in the same rooms when unoccupied. In each instance, the Mur content of dust was increased and the hydroxy fatty acid distribution changed similarly suggesting an alteration in the bacterial population. Here, findings are compared with results from two additional schools. Follow-up aerosol monitoring by particle size was also performed for the first time for all 3 schools. The particle size distribution was shown to be quite different in occupied versus unoccupied schoolrooms. Within individual classrooms, concentrations of airborne particles [greater-than-or-equal]0.8 [micro sign]m in diameter, and CO(2) were correlated. This suggests that the increased levels of larger particles are responsible for elevation of bacterial markers during occupation. Release of culturable and non-culturable bacteria or bacterial aggregates from children (e.g. from flaking skin) might explain this phenomenon.  相似文献   

5.
In order to characterize the status of indoor air pollution in some important facilities, a list of key criteria pollutants [particulate matter (PM(10)), carbon dioxide (CO(2)), carbon monoxide (CO), formaldehyde (HCHO), and bioaerosol] was measured from a total of 91 randomly selected sites in 18 different cities, Korea (February 2006 to December 2009). The target facilities include 43 child care facilities, 38 medical facilities, 6 elementary schools, and 4 postnatal care centers. The results showed that some air pollutants (e.g., CO and HCHO) did not exceed the recommended guideline [e.g., the Korean indoor air standard (KIAS) values of 10 ppm and 100 ppb, respectively]. However, concentration of PM(10), CO(2), and bioaerosol occasionally exceeded their respective guidelines (e.g., seven, three, and two cases). Discrete seasonalities were observed from indoor pollutants because of varying ventilation practice (e.g., summer time dominance of PM(10), HCHO, and bioaerosol or winter dominance of CO(2) and CO). However, as the concentrations of the indoor pollutants were scarcely above the recommended guideline level, more diversified approaches are desirable to diagnose the status of indoor pollution and to provide a realistic strategy for the improvement of IAQ.  相似文献   

6.
The aim of this study is to examine the relative contribution of the outdoor concentration, the ventilation rate, the geometric characteristics of the indoor environment (i.e., extent of indoor surfaces and indoor volume), the deposition, and chemical reactions to the indoor air quality of the office microenvironment. For this case study, the NO, NO2, and O3 concentrations indoors and outdoors and TVOCs and CO2 concentrations indoors were measured in an office microenvironment in Athens, Greece, that was ventilated both naturally and mechanically. The calculated ventilation and loss rates and the measured outdoor concentrations of NO, NO2, and O3 were set as input to Multi-chamber Indoor Air Quality Model in order to study the temporal variation of the indoor NO, NO2, and O3 concentrations. Results showed that when the ventilation rate and outdoor concentration are high, the relative contribution of the transport process contributes significantly, while the chemical process depends on the contemporary interplay between the indoor O3, NO, and NO2 concentrations and lighting levels. The significance of each process was further examined by performing sensitivity tests, and it was found that the most important parameters were the deposition velocities, the UV infiltration rates (which determines the indoor chemical reaction rates), the ventilation rates, and the filtration (when a mechanical ventilation system is used). The effect of the hydrocarbon chemistry was not significant.  相似文献   

7.
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium–low level of bacterial contamination (50–500 CFU/m3) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.  相似文献   

8.
Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations.  相似文献   

9.
Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people working in the mall, should be of health effect concern.  相似文献   

10.
Today's large-scale poultry production is often accompanied by high concentrations of airborne microorganisms at working places. However, the microbial communities in those bioaerosols are rarely characterised. In this study, we investigated the bacterial population in bioaerosols from a duck hatchery by both cultivation based and molecular methods and compared the results. Depending on used media, concentrations of airborne culturable bacteria varied between 6 × 10(1) and 7 × 10(6) CFU per m(3) air. The corresponding total cell count of DAPI stained cells was 2 × 10(7) cells per m(3) air. 16S rRNA gene analyses of bacterial isolates and clone libraries revealed a low species richness in hatcheries air, respectively. More than 50% of bacterial isolates were phylogenetically most closely related to bacterial species of the risk group 2 (German TRBA). The sequence composition in clone libraries supported the result of cultivation based approaches, whereby sequences assigned to Staphylococcus, Acinetobacter and Enterococcus are the most common. The high concentration of airborne bacteria which are most closely related to species of potential health risk requires further detailed investigations for these bacterial species.  相似文献   

11.
Dwellings showing a presence of moulds are considered to be unhealthy both by the inhabitants and by sanitary authorities. Although the thresholds of pathogenicity have not yet been established, the toxic, allergic and infectious risk of indoor moulds is better understood today. A study on indoor fungi contamination for 128 dwellings was done between October and May in France. It concerned 69 dwellings, the occupants of which either complained to the sanitary authorities about problems of moulds and humidity or consulted a doctor who related their symptoms to housing conditions. Fifty-nine other dwellings, the occupants of which were healthy, constituted the control group. We present the statistical analysis of questionnaires, which aimed to clarify characteristics of dwellings associated with high concentrations of airborne moulds. Air samples were taken with an impactor in 500 rooms. On visiting dwellings, investigators obtained answers to 25 questions concerning characteristics of inhabitants and living space, as well as the presence of mould indicators. Indoor and outdoor temperature and indoor relative humidity of air measurements were taken. The total concentration of fungi in the air was significantly higher in ground floor apartments versus those on other floors (p = 0.047), in small and highly occupied dwellings (p = 0.03 and 0.003), in dwellings with electric heating (p = 0.04), without a ventilation system (p = 0.003), with water damage (p = 0.003), and finally, in those where the investigator noted an odour of moisture or visible moulds (p < 0.001). The efficacy of the latter criteria in the evaluation of insalubrity is discussed.  相似文献   

12.
Measureable levels of chlorpyrifos were seen in air and on horizontal and vertical surfaces over an 84-day sampling period following application by two different methods. Pressurized aerosol applications had the highest airborne levels over the 84-day sampling period, and movement into adjacent, nontreated rooms was seen 7 days after application. Highest surface residues found were located at floor/wall interfaces and were due probably as a result of splash or overspray around treated areas. Residue levels from desk sides were very low and all surface residues were highly variable. One could not predict what surface levels would be based upon airborne concentrations.  相似文献   

13.
Total suspended particulate (TSP), PM(2.5) and BTEX were collected in nine offices in the province of Antwerp, Belgium. Both indoor and outdoor aerosol samples were analysed for their weight, elemental composition, and water-soluble fraction. Indoor TSP and PM(2.5) concentrations ranged from 7-31 microg m(-3) and 5-28 microg m(-3), with an average of 18 and 11 microg m(-3), respectively. Of all the elements analysed in indoor TSP, more than 95% was represented by Al, Si, K, Ca, Fe, Cl and S, accounting for 12% of the TSP by mass. The other elements showed significant enrichment relative to the earth's crust. The water-soluble ionic fraction accounted for almost 30% of the sampled indoor TSP by weight, and was enriched by anthropogenic activities. It was shown that the indoor PM levels varied among the offices, depending on the ventilation pattern, location, and occupation density of the office. Indoor BTEX levels ranged together from 5-47 microg m(-3) and were considerably higher than the corresponding outdoor levels. It was observed that some recently constructed and renovated buildings were clearly burdened with elevated levels for toluene, ethyl benzene, and xylenes, while outdoor air was found to be the main source for BTEX levels at the 'older' offices.  相似文献   

14.
Methods for estimating airborne contaminant concentrations at specific locations within enclosed spaces, such as mathematical models and computational fluid dynamics (CFD), often are validated against directly measured concentrations. However, concentration variation with time introduces uncertainty into the measured concentration. Failure to determine monitoring time requirements can lead to errors in quantifying representative concentrations, which are likely to be attributed to errors in the method being validated. In the current study, to obtain the representative concentrations at multiple locations with a direct reading instrument, we used the standard deviation ratio (SDR) method to determine the required minimum monitoring time within a specified precision limit. To demonstrate the use of the SDR approach in constructing precision confidence intervals, tracer gas concentrations at nine sampling locations in an experimental room were measured to obtain population parameters. Three flow rates of 0.9, 3.3 and 5.5 m(3) min(-1) were employed and contaminant concentrations were measured using a photoionization analyser. Monitoring time requirements varied substantially with location within the room and were strongly dependent upon the flow rate of air through the room. The proposed method would be very useful for industrial hygienists and indoor air researchers who sometimes need to obtain several hundred measured concentrations for validation purposes or to perform tests under repeatable conditions in enclosed spaces. This study also showed that the proposed method can be used to devise efficient indoor monitoring strategies.  相似文献   

15.
In order to be able to make a decision, as to whether a room or building has a health-endangering pentachlorophenol (PCP) concentration, usually the PCP concentrations in air and settled dust are measured. The variability of the PCP concentration in indoor air and dust was studied. Air and dust samples were taken from 75 rooms in 30 buildings with suspicion of application of PCP-containing wood preservatives. Sampling was repeated four times within 18 months. Thirty-six rooms were reconstructed within the study; 39 rooms had unchanged contamination status during the study. The four times repeated measurements of PCP concentrations in air and dust in these rooms showed large variations of the measured values. The variability of the results is to a large extent in the same range as the measured values. The observed relative standard deviation of the PCP concentrations in air and dust does not depend on the average PCP concentration detected in the individual rooms.  相似文献   

16.
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition, minimizing dust concentrations to technologically feasible values is required by the current German legislation. Therefore, substantial reduction of the dust concentration is required.  相似文献   

17.
对家庭室内空气的细菌浓度,在不同时间段的分布进行了研究分析。采用平皿沉降法,测得结果:清晨7:00为强污染时,晚19:00为弱污染时。并对居室清扫方式提出建议,以促进生存空间的环境质量的改善。  相似文献   

18.
Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 μm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 – TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.  相似文献   

19.
Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.  相似文献   

20.
利用2018年261个乡镇环境空气自动监测站监测数据,结合GIS空间分析技术,对石家庄市PM10和PM2.5的时空污染特征进行了研究。结果表明,石家庄地区PM10和PM2.5污染的空间分布整体表现为西北部山区好于东南部的平原地区,主城区好于周边县(市、区)的特征。采暖期PM10和PM2.5的污染程度明显重于非采暖期。PM2.5稳定性差于PM10,PM10和PM2.5的稳定性与污染程度具有一定的负相关性,表现出污染越轻的区域稳定性越差。两者的日均值浓度变化在时间序列上呈极强正相关,且污染越重的区域时间相关性越强。与日均值相关性不同,污染程度越轻的区域PM10和PM2.5年均值的线性相关性越强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号