首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
Removal of cadmium(II), lead(II), and chromium(VI) from aqueous solution using clay, a naturally occurring low-cost adsorbent, under various conditions, such as contact time, initial concentration, temperature, and pH has been investigated. The sorption of these metals follows both Langmuir and Freundlich adsorption isotherms. The magnitude of Langmuir and Freundlich constants at 30°C for cadmium, lead, and chromium indicate good adsorption capacity. The kinetic rate constants (K ad) indicate that the adsorption follows first order. The thermodynamic parameters: free energy change (ΔG o), enthalpy change (ΔH o), and entropy change (ΔS o) show that adsorption is an endothermic process and that adsorption is favored at high temperature. The results reveal that clay is a good adsorbent for the removal of these metals from wastewater.  相似文献   

2.
We demonstrated a complete decomposition method for ionic liquids (ILs; organic cation part: butyl-methyl or ethyl-methyl imidazolium, and inorganic anion part: PF6, BF4 or Br) in aqueous media by combining a hydrothermal mineralization method with a photocatalytic decomposition (PD) method. As a result, the hydrothermal treatment with Ca(OH)2 mineralizer could effectively remove the inorganic anion part, such as PF6 or BF4 and the PD could decompose the organic cation part effectively. Therefore, the detoxification of ILs in aqueous media was accomplished by the present method.  相似文献   

3.
Microwave and Fenton's reagent oxidation of wastewater   总被引:16,自引:0,他引:16  
We compared two H2O2 oxidation methods for the treatment of industrial wastewater: oxidation using Fenton's reagent [H2O2/Fe(II)] and microwave irradiation. Both methods were applied to the treatment of synthetic phenol solutions (100 mg L−1) and of an industrial effluent containing a mixture of ionic and non-ionic surfactants at high load (20 g L−1 of COD). The effects of initial pH, initial H2O2 concentration, Fenton catalyst amount and irradiation time were assessed. According to the oxidation of phenol, it has been found that the oxidation by Fenton's reagent is dependent on the pH, contrary to the microwave system, which is not influenced by this parameter. For both systems, a limiting amount of oxidant has been found; above this point the oxidation of phenol is not improved by a further addition of peroxide. The oxidation of the industrial surfactant effluent has only been successful with the Fenton's reagent. In this case, large amounts of ferrous ions are necessary for the precipitation of the ionic surfactants of the effluent, followed by the oxidation of the non-ionic constituents of the solution. Electronic Publication  相似文献   

4.
Svabite is a secondary arsenate mineral, calcium fluoride arsenate [Ca5(AsO4)3F], in the apatite group of phosphates. Its dissolution and subsequent release of aqueous species play an important role in the cycling of arsenic and fluoride in the environment, but the thermodynamic and kinetic properties of svabite dissolution have never been investigated. In the present study, svabite was prepared by precipitation and characterized by various techniques, and then dissolution of synthetic svabite was studied at 25, 35 and 45°C in a series of batch experiments. In addition, the aqueous concentrations from the batch dissolution were used to calculate the solubility product and free energy of formation of svabite. The results of the X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses indicated that the synthetic, microcrystalline svabite with apatite structure used in the experiments has not changed after dissolution. For the dissolution of svabite [Ca5(AsO4)3F] in ultrapure water, F ions were initially found to dissolve preferentially when compared with calcium and arsenate. Preferential dissolution of arsenate when compared with that of calcium was also observed. Dissolution of svabite in aqueous medium appeared to be always non-stoichiometric at the beginning, but when a dissolution equilibrium or steady state was reached at 25 and 35°C, the solid dissolved almost stoichiometrically. The release of calcium, arsenic and fluoride to solution increased with decreasing temperature. The mean K sp value was calculated for Ca5(AsO4)3F of 10−39.21 (10−39.18 ~ 10−39.24) at 25°C; the free energy of formation ΔG f o [Ca5(AsO4)3F] was −5210.46 kJ/mol.  相似文献   

5.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

6.
On the eastern shore of Nova Scotia late summer atmospheric systems cause upwelling of shelf water; the associated temperature variations of 10 °C with a 6 to 8 d period are comparable in magnitude to the seasonal variation. A laboratory study was undertaken to assess the effects of these temperature fluctuations on sea scallop (Placopecten magellanicus) growth and metabolism. In a factorial design, scallops were subjected to constant (10 °C) or a variable (6 to 15 °C) 8 d temperature cycle, and either a low (seston in filtered seawater) or high (seston supplemented with cultured phytoplankton) food diet. During the 48 d experiment scallop mortality was low and growth positive in all treatments. Shell and total tissue growth rate did not differ between temperature treatments, but growth in the high food treatments was 40 to 50% higher than in the low food treatments. However, soft tissue (excluding adductor) growth did show a temperature treatment effect; growth rates were significantly higher in the fluctuating temperature treatment, due in part to greater gonad development. Weight-standardized rates of scallop oxygen consumption (V sO2 , μmol O2 g−1 h−1) were 20 to 25% higher in high food than in low food treatments, consistent with the expected increase in respiration due to the higher growth rates. Scallop metabolism did not acclimate to the fluctuating temperature cycle; V sO2 and ammonium excretion (V sNH+ 4, μmol O2 g−1 h−1) remained dependent on ambient temperature throughout the experiment. V sNH+ 4 Q10 (2.77) was higher than V sO2 Q10 (2.01) which was reflected in a decrease in the O:N ratio at 15 °C, indicating a shift toward increased protein catabolism and a stressed state. At 10 °C, V sO2 and V sNH+ 4 in the variable temperature treatments were 15 to 18% lower than in the constant temperature treatments, a difference that was not detected in growth measurements. Results demonstrate that the metabolism of Placopecten magellanicus, unlike some bivalve species, is tightly coupled to fluctuations in ambient temperature. Although an absence of compensatory acclimation had a minimal effect on growth in this study, if high temperatures were combined with low food conditions a reduction in scallop production could result. Received: 23 June 1998 / Accepted: 8 February 1999  相似文献   

7.
Insoluble porous solid functionalized ligand system bearing 2-aminophenylaminopropyl chelating ligand of the general formula P–(CH2)3NH–(C6H4)–NH2 was prepared via the sol–gel process, where P represents [Si–O] n polysiloxane network. First, the 2-aminophenylaminopropylsilane agent was prepared by substitution reaction between 3-chloropropyltrimethoxysilane and 1,2-phenylenediamine, followed by hydrolytic polycondensation between 2-aminophenylaminopropylsilane agent and tetraethylorthosilicate(TEOS). The immobilized 2-aminophenylaminopropylpolysiloxane P–(CH2)3NH–(C6H4)–NH2(P–AphA) was characterized by 13C NMR, XPS, and FTIR. The results showed that 1,2-phenylenediamine groups were introduced onto polysiloxane network. The functionalized ligand system exhibits 90–100% metal uptake capacity for all metal ions except Cd2+. The elemental analysis data and the metal uptake capacities of the immobilized ligand system suggest that over than 90% ligand sites were involved in coordination with metal ions except that of cadmium forming 1:1 metal to ligand ratio complexes.  相似文献   

8.
 The abundance and biomass of Corophium multisetosum Stock, 1952 were determined from benthic corer samples collected monthly over 1 yr in the upper reaches of Canal de Mira (Ria de Aveiro, Portugal). Both density and biomass over the sampling period were negatively correlated with water temperature and positively correlated with chlorophyll a concentration in the sediment. C. multisetosum density was significantly negatively correlated with plant biomass and positively correlated with salinity. The nature of the sediment, favourable environmental conditions, high availability of food and low interspecific competition allowed the population to reach a maximal density of 200 × 103 individuals m−2 and a maximal biomass (ash-free dry wt, AFDW) of 62 gAFDW m−2. The population was highly productive, especially during the autumn/winter period. Production, estimated by two different methods (Hynes method: 251 gAFDW m−2 yr−1; Morin–Bourassa method: 308 gDW m−2 yr−1), was much higher than the values reported for other Corophium species. The annual P:Bˉ ratio (10) was high, but similar to values reported for Swedish populations of C. volutator and lower than the values estimated from Mediterranean populations of C. insidiosum. Received: 8 October 1999 / Accepted: 22 June 2000  相似文献   

9.
The anemone Amphianthus inornata is found at bathyal depths living on colonies of the gorgonian Acanella arbuscula. Previous studies of the morphology and reproductive stage of this anemone, during different times of the year, have indicated that it reproduces sexually on a seasonal basis. A small proportion of the study population were also reported to be undergoing asexual reproduction by fission. The anemone Kadosactis commensalis is also bathyal, but lives mainly on the holothurian Paroriza prouhoi. Previous morphological studies have indicated that K. commensalis is a protandrous hermaphrodite that exhibits non-seasonal sexual reproduction only. In the present study, allozyme electrophoresis was used to examine the prevalence and genetic consequences of asexual reproduction in a population of Amphianthus inornata from 2 200 m in the Rockall Trough, North Atlantic Ocean. Genetic evidence, from five randomly selected polymorphic enzyme loci, for asexual reproduction in this species was weak. Exact tests indicated that genotype frequencies did not differ significantly from those expected under Hardy–Weinberg equilibrium. F IS (correlation of homologous alleles with reference to local population, assuming random mating) values also did not differ significantly from zero, and observed heterozygosity (H o =0.446) and genotypic diversity (G o =17.0387) were very similar to Hardy–Weinberg expected frequencies (H e =0.446; G * e =17.0010). Evidence suggests that the contribution of asexual reproduction to recruitment in the study population of A. inornata is low. For a single population of K. commensalis from 4 850 m on the Porcupine Abyssal Plain, North Atlantic Ocean, the hypothesis that inbreeding due to reduced occurrence of outcrossing between anemones on a single holothurian host was examined by electrophoresis of ten randomly selected enzyme loci. Single-locus genotypic frequencies were significantly different from expected frequencies for one locus P≤ 0.05, hexokinase-1 (Hex-1)]. F IS values were significantly different from zero for two enzyme loci (Hex-1 and Hex-2, P≤ 0.01 and P≤ 0.05, respectively), and the overall observed heterozygosity was lower than the expected heterozygosity (H o =0.125, H e =0.140). The hypothesis of inbreeding could not be rejected by the present study, although sample size was small (N=55), leading to possible bias in tests of significance. Genetic variation in A. inornata was higher than that recorded for most eukaryotes, although interlocus sampling error for only five loci is high. High genetic variability has been found in other sea anemones, and has been related to high longevity and mixed reproductive modes. Genetic variation in K. commensalis was in the higher range of that found in other eukaryotes, and is not unusual for anemones. Received: 5 August 1996 / Accepted: 11 December 1996  相似文献   

10.
The contents of free amino acids (FAA) and total protein, together with growth and gut-content, of turbot (Scophthalmus maximus L.) larvae reared at 14, 18 and 22 °C were studied from first-feeding to approximately 140 effective day-degrees post hatch (Deff ). Artemia franciscana nauplii and two species of rotifers were used as prey. Protein content accounted for about 42 and 26% of dry body mass in the A. franciscana nauplii and the rotifers, respectively. The FAA pool constituted 5.6 and 4.8% of the total amino acids in the same animals. The dry body mass of turbot larvae was exponentially related to Deff . Protein and FAA contents were linearly related to dry body mass, and were independent of rearing temperature between 14 and 18 °C. At the end of the experiment, however, turbot larvae at 22 °C had lower gut content values, retarded growth rates, and decreased FAA contents and concentrations. Thus, at this high temperature, turbot larvae seem unable to catch and ingest sufficient prey, or to sustain an amino acid assimilation rate from the intestine sufficient to meet metabolic demands. Received: 2 January 1997 / Accepted: 25 September 1998  相似文献   

11.
Advanced oxidation processes, such as photocatalysed oxidation, provide an important route for degradation of wastes. In this study, the lowest excited state (3MLCT) of Ru(bpy)32+ is used to break down chlorophenol pollutant molecules to harmless products. This has the advantage of using visible light and a short-lived catalytically active species. Photolysis of deaerated aqueous solutions of a variety of mono- and poly-substituted chlorophenols has been followed in the presence of Ru(bpy)32+/S2O82− with near visible light (λ > 350 nm) by UV/visible absorption spectroscopy, luminescence, potentiometry, NMR and HPLC techniques. Upon irradiation, a decrease is observed in the chlorophenol concentration, accompanied by the formation of Cl, H+ and SO42− ions as the main inorganic products. Benzoquinone, phenol, dihydroxybenzenes and chlorinated compounds were the dominant organic products. As the ruthenium(II) complex is regenerated in the reaction, the scheme corresponds to an overall catalytic process. The kinetics of the rapid chlorophenol photodechlorination has been studied, and are described quite well by pseudo-first order behaviour. Further studies on this were made by following Cl release with respect to the initial Ru(bpy)32+ and S2O82− concentrations. A comparison is presented of the photodechlorination reactivity of the mono and polychlorophenols studied at acidic and alkaline pH.  相似文献   

12.
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae, Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement. However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these organisms will ensue.  相似文献   

13.
A temperature-dependent growth model is presented for nauplii and copepodites of the estuarine calanoid copepod Acartia tonsa from southern Europe (Portugal). Development was followed from egg to adult in the laboratory at four temperatures (10, 15, 18 and 22°C) and under saturating food conditions (>1,000 μg C l−1). Development times versus incubation temperature were fitted to a Belehradek’s function, showing that development times decreased with increasing incubation temperature: at 10°C, A. tonsa need 40.3 days to reach adult stage, decreasing to 8.9 days when reared at 22°C. ANCOVA (homogeneity of slopes) showed that temperature (P<0.001) and growth phase (P<0.01) had a significant effect on the growth rate. Over the range of temperatures tested in this study, highest weight-specific growth rates were found during naupliar development (NI–NVI) and varied from 0.185 day−1 (10°C) to 0.880 day−1 (22°C) with a Q 10 equal to 3.66. During copepodite growth (CI–CV), the weight-specific growth rates ranged from 0.125 day−1 (10°C) to 0.488 day−1 (22°C) with a Q 10 equal to 3.12. The weight-specific growth rates (g) followed temperature (T) by a linear relationship and described as ln g=−2.962+0.130 T (r 2=0.99, P<0.001) for naupliar stages and ln g=−3.134+0.114T (r 2=0.97, P<0.001) for copepodite stages. By comparing in situ growth rates (juvenile growth and fecundity) for A. tonsa taken from the literature with the temperature-dependent growth model defined here we suggest that the adult females of A. tonsa are more frequently food limited than juveniles.  相似文献   

14.
The surface complexation of Cd(II) to goethite (α‐FeOOH) at varying concentrations of solid, background electrolyte and Cd(II) has been investigated. The data was quantified according to the generalized version of triple layer (TLM) surface complexation model. In the presence of atmospheric CO2, it was found that the experimental data of Cd(I) α‐FeOOH system could be explained satisfactorily by incorporating both the > FeOHCd+ and > FeOCdHCO3 in the calculations. However, at excessive concentrations of Cd(II), typically over 13% surface coverages, the TLM predictions significantly underestimated the experimentally observed data obtained for Cd(II)/α‐FeOOH systems.  相似文献   

15.
A novel cation exchanger, polymethacrylic acid-grafted saw dust (SD) with spacer group (SP) containing carboxylate functional group at the chain end (SDGPMA-SP-COOH) was prepared from saw dust of Jack wood, and its adsorption equilibrium and thermodynamics of Cr(III) ions were studied at different initial concentrations and temperatures at pH 7.0 using batch technique. Thermodynamic parameters such as change in standard free energy, ΔG 0, standard enthalpy, ΔH 0 and standard entropy, ΔS 0 were determined. The values of isosteric heat of adsorption (ΔH x ) remain constant at different surface loading of Cr(III) indicating homogeneous surface sites and the absence of lateral interaction between adsorbed ions.  相似文献   

16.
New-production (nitrate uptake) rates in the equatorial Pacific were estimated by parallel measurements of nitrate disappearance from sea water using a colorimetric method and of 15N-labelled nitrate (15NO3 ) incorporation into particulate organic nitrogen (PON) collected on GF/F filters (net nitrate uptake, conventional 15N-tracer method) and Anopore (0.2 μm) membranes. Regression analyses of 74 sample pairs gathered during 12 and 24 h productivity experiments revealed a significant positive relationship between decreasing nitrate level and 15NO3 accumulation into PON retained on GF/F filters, but the slopes of Model I and Model II regression lines were 1.18 and 1.29, respectively, suggesting that 15 to 22% of 15NO3 removed from the dissolved fraction were lost to another N-pool. Two possible avenues for the missing 15NO3 have been examined: uptake by submicron particles passed through the GF/F filters, and loss as dissolved organic nitrogen (DON). Nitrate uptake by small cells not recovered on GF/F filters, could be safely eliminated as a cause of loss, since 15NO3 uptake rates obtained from 15N entering PON collected on GF/F filters agreed well with those obtained from 15N entering PON collected on Anopore membranes (32 sample pairs). Inspection of the DON pool of 0.2 μm filtrates for excess-15N enrichment (20 samples) revealed that in nitrate-rich waters (equatorial upwelling between 1°N and 10°S), loss of 15NO3 as DO15N accounted for <5% of net nitrate uptake. In samples from subtropical oligotrophic waters (from 11°S southward), however, 15NO3 loss as DO15N represented up to 20% of net NO3 uptake. These results, as well as experimental considerations concerning the use of colorimetric and isotopic methods to measure new production show that: (1) earlier reported high discrepancies between nitrate decreases (ΔNO3 ) and 15NO3 incorporation into filterable particles (ΔNO3 /15NO3 incorporation >2) were probably erroneous; (2) the use of GF/F filters does not result in an underestimation of new production, although it was found to underestimate PON concentrations by up to 60%; (3) in the equatorial upwelling area (1°N to 10°S), which has high ambient nitrate levels (>2000 nmol l−1) but only slight changes in concentration (0 to 80 nmol l−1 d−1), new production is more accurately estimated by the isotopic method than by the chemical method; (4) in subtropical oligotrophic waters (from 11°S southward) with low ambient nitrate levels (0 to 100 nmol l−1), both procedures are appropriate as long as nitrate removal per incubation period is >3 nmol l−1 (lower rates are only detectable with the isotopic method); (5) the traditional 15N-tracer technique does not substantially underestimate net new-production in the equatorial Pacific, and failure to account for the loss of 15NO3 as DON, i.e. to estimate gross nitrate uptake (gross uptake = net uptake + 15N loss) tends to underestimate new production on an average by only 10%. Overall, the apparent low level of new production in the nitrate-rich area of the central equatorial Pacific seems to be a fact, and may be ascribable to other nutrient (macro and micro) deficiencies and/or to intense in situ recycling of ammonium and nitrate (regenerated production) rather than to inaccurate nitrate uptake rates measured with the classical 15N-tracer technique. Received: 24 November 1998 / Accepted 10 March 2000  相似文献   

17.
Research undertaken over the last 40 years has identified the irrefutable relationship between the long-term consumption of cadmium (Cd)-contaminated rice and human Cd disease. In order to protect public health and livelihood security, the ability to accurately and rapidly determine spatial Cd contamination is of high priority. During 2001–2004, a General Linear Regression Model Irr-Cad was developed to predict the spatial distribution of soil Cd in a Cd/Zn co-contaminated cascading irrigated rice-based system in Mae Sot District, Tak Province, Thailand (Longitude E 98°59′–E 98°63′ and Latitude N 16°67′–16°66′). The results indicate that Irr-Cad accounted for 98% of the variance in mean Field Order total soil Cd. Preliminary validation indicated that Irr-Cad ‘predicted’ mean Field Order total soil Cd, was significantly (p < 0.001) correlated (R 2 = 0.92) with ‘observed’ mean Field Order total soil Cd values. Field Order is determined by a given field's proximity to primary outlets from in-field irrigation channels and subsequent inter-field irrigation flows. This in turn determines Field Order in Irrigation Sequence (Field OrderIS). Mean Field Order total soil Cd represents the mean total soil Cd (aqua regia-digested) for a given Field OrderIS. In 2004–2005, Irr-Cad was utilized to evaluate the spatial distribution of total soil Cd in a ‘high-risk’ area of Mae Sot District. Secondary validation on six randomly selected field groups verified that Irr-Cad predicted mean Field Order total soil Cd and was significantly (p < 0.001) correlated with the observed mean Field Order total soil Cd with R 2 values ranging from 0.89 to 0.97. The practical applicability of Irr-Cad is in its minimal input requirements, namely the classification of fields in terms of Field OrderIS, strategic sampling of all primary fields and laboratory based determination of total soil Cd (T-CdP) and the use of a weighed coefficient for Cd (CoeffW). The use of primary fields as the basis for Irr-Cad is also an important practical consideration due to their inherent ease of identification and vital role in the classification of fields in terms of Field OrderIS. The inclusion of mean field order soil pH (1:5water) to the Irr-Cad model accounted for over 79% of the variation in mean Field Order bio-available (DTPA (diethylenetriaminepentaacetic acid)-extractable) soil Cd. Rice is the staple food of countries of the Greater Mekong Sub-region (includes Vietnam, Myanmar, Lao PDR, Thailand and Yunnan Province, China). These countries also have actively and historically mined Zn, Pb, and Cu deposits where Cd is likely to be a potential hazard if un-controlled discharge/runoff enters areas of rice cultivation. As such, it is envisaged that the Irr-Cad model could be applied for Cd hazard assessment and effectively form the basis of intervention options and policy decisions to protect public health, livelihoods, and export security.  相似文献   

18.
Recruitment variability plays a critical role in determining local population densities of benthic organisms, but extreme vulnerability at the onset of juvenile life is a trait that is largely responsible for population survivorship trends. The aim of the present study was to determine the role of juvenile recruitment in the population structure of Necora puber. Juveniles of N. puber were collected from the lower intertidal of rocky shores of Plymouth Sound (southwest coast of the UK) and monthly size–frequency distribution were used to determine the dynamics and the growth of the population. The parameters of the von Bertalanffy growth function were estimated (K=0.281 year−1; t 0=0.043; C=0.103; and t s=0.268) assuming a L =105 mm. Growth was markedly seasonal and present results indicated a slower juvenile growth rate than described previously for N. puber. The recruitment period was extensive and was two times higher in 2001 than in 2000 at the start of the 1+ year, but levelled off at the end of the 1+ year class on three of the four shores studied. Instantaneous mortality as high as 5.1 year−1(99.4% year−1) was observed during the higher recruitment year. Early juvenile mortality appears to be density dependent and a demographic bottleneck appears to limit the number of juveniles on some shores.  相似文献   

19.
 In the Black Sea, during summer stratification, Calanus euxinus (Hulsemann) undertakes diel vertical migrations with an amplitude of about 117 m from oxygenated, warm (18 °C) surface layers to hypoxic (∼0.8 mg O2 l−1) zones with lower temperature (7.9 °C). When such changes in temperature and oxygen concentration are reproduced in the laboratory, total metabolism, basal metabolism and scope of activity of copepods decrease 7.2, 7.8 and 6.7 times, respectively, while the frequency of locomotory acts and mechanical power decline 3.4- and 9.5-fold, respectively. These changes allowed the copepods to conserve a significant portion of food consumed near the surface for transformation to lipid reserves. Diel respiratory oxygen consumption of migrating individuals, calculated so as to include actual duration of residence in layers with different temperature and oxygen concentrations, is estimated at 17.87 μg O2 ind−1. The net energy cost of vertical migration made up only 11.6% of the total. Copepods expend 78.6% of diel energy losses during approximately 10 h in the surface layers, while about 5.4% is required during about 9 h at depth. Hypoxia is shown to have a significant metabolic advantage during diel vertical migrations of C. euxinus in the Black Sea. Received: 1 October 1999 / Accepted: 11 July 2000  相似文献   

20.
Various iron oxides are used for Fenton reactions to degrade organic pollutants. The degradation efficiency may be improved by transforming an iron oxide phase to another. Here, we report on the transformation of goethite into hematite by thermal treatment at 400 °C. The products were analyzed by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and N2-physisorption. The catalytic activities were measured for orange II bleaching at initial concentration of 25 mg L?1, pH 3, catalyst concentration of 0.2 g L?1; 5 mM H2O2, 30 °C. Results show that the synthesized goethite was successfully transformed into hematite, and the specific surface area of the material increased from 134 to 163 m2 g?1. The bleaching efficiency of the orange II dye reached 100 % for the hematite product, versus 78 % for goethite. Therefore, a moderate thermal treatment of a plasma-synthesized goethite improves the catalytic oxidation of organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号