首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wildlife data often show spatial organization, demonstrating positive correlations either as a result of processes occurring over the landscape or due to the influence of spatially structured environmental variables. It is, thus, essential to consider non-random spatial structure when evaluating the underlying causes of biological variation. In this study, we analyzed the population structure of Chilina dombeyana shell morphology of 14 populations that are close geographically and belong to the same hydrographic basin. We utilized a variation partitioning approach to evaluate the importance of spatial processes, such as migration, acting over the landscape, and environmental characteristics, including habitat and hydrologic characteristics, and the occurrence of aquatic predators in promoting between population variation. Our results demonstrate spatially structured variation in C. dombeyana shell morphology, with populations living near each other having more similar shell sizes than populations living farther apart. The shell size variation partition indicated that both spatially structured environmental factors and genetic relationships resulting from migration or shared common ancestry may explain this pattern. Shell shape variation, in contrast, was found to be essentially under the influence of non-spatially structured environmental factors, with habitat and water characteristics accounting for about half of the total variation among populations. The large proportion of the variation in shell size that is spatially structured demonstrates that spatial structure on morphological traits might be strong and highlights the need to consider such phenomenon in intraspecific studies of phenotypic evolution.  相似文献   

2.
Cichlids are an excellent model to study explosive speciation and adaptive radiation. Their evolutionary success has been attributed to their ability to undergo rapid morphological changes related to diet, and their particular breeding biology. Relatively minor changes in morphology allow for exploitation of novel food resources. The importance of phenotypic plasticity and genetically based differences for diversification was long recognized, but their relationship and relative magnitude remained unclear. We compared morphology of individuals of four wild populations of the Lake Tanganyika cichlid Tropheus moorii with their pond-raised F(1) offspring. The magnitude of morphological change via phenotypic plasticity between wild and pond-bred F(1) fish exceeds pairwise population differences by a factor of 2.4 (mean Mahalanobis distances). The genetic and environmental effects responsible for among population differentiation in the wild could still be recognized in the pond-bred F(1) fish. All four pond populations showed the same trends in morphological change, mainly in mouth orientation, size and orientation of fins, and thickness of the caudal peduncle. As between population differentiation was lower in the wild than differentiation between pond-raised versus wild fish, we suggest the narrow ecological niche and intense interspecific competition in rock habitats is responsible for consistent shape similarity, even among long-term isolated populations.  相似文献   

3.
Evolution of caste is a central issue in the biology of social insects. Comparative studies on their morphology so far suggest the following three patterns: (1) a positive correlation between queen–worker size dimorphism and the divergence in reproductive ability between castes, (2) a negative correlation among workers between morphological diversity and reproductive ability, and (3) a positive correlation between queen–worker body shape difference and the diversity in worker morphology. We conducted morphological comparisons between castes in Pachycondyla luteipes, workers of which are monomorphic and lack their reproductive ability. Although the size distribution broadly overlapped, mean head width, head length, and scape length were significantly different between queens and workers. Conversely, in eye length, petiole width, and Weber’s length, the size differences were reversed. The allometries (head length/head width, scape length/head width, and Weber’s length/head width) were also significantly different between queens and workers. Morphological examinations showed that the body shape was different between queens and workers, and the head part of workers was disproportionately larger than that of queens. This pattern of queen–worker dimorphism is novel in ants with monomorphic workers and a clear exception to the last pattern. This study suggests that it is possible that the loss of individual-level selection, the lack of reproductive ability, influences morphological modification in ants.  相似文献   

4.
Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.  相似文献   

5.
Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.  相似文献   

6.
Recent large-scale studies have shown that biodiversity-rich regions also tend to be densely populated areas. The most obvious explanation is that biodiversity and human beings tend to match the distribution of energy availability, environmental stability and/or habitat heterogeneity. However, the species–people correlation can also be an artefact, as more populated regions could show more species because of a more thorough sampling. Few studies have tested this sampling bias hypothesis. Using a newly collated dataset, we studied whether Orthoptera species richness is related to human population size in Italy’s regions (average area 15,000 km2) and provinces (2,900 km2). As expected, the observed number of species increases significantly with increasing human population size for both grain sizes, although the proportion of variance explained is minimal at the provincial level. However, variations in observed Orthoptera species richness are primarily associated with the available number of records, which is in turn well correlated with human population size (at least at the regional level). Estimated Orthoptera species richness (Chao2 and Jackknife) also increases with human population size both for regions and provinces. Both for regions and provinces, this increase is not significant when controlling for variation in area and number of records. Our study confirms the hypothesis that broad-scale human population–biodiversity correlations can in some cases be artefactual. More systematic sampling of less studied taxa such as invertebrates is necessary to ascertain whether biogeographical patterns persist when sampling effort is kept constant or included in models.  相似文献   

7.
Recent studies on ecological networks have quantified the contribution of ecological, historical, and evolutionary factors on the structure of local communities of interacting species. However, the influence of species’ biogeographical traits, such as migratory habits or phylogeographical history, on ecological networks is poorly understood. Meta-networks, i.e., networks that cover large spatial extensions and include species not co-occurring locally, enable us to investigate mechanisms that operate at larger spatial scales such as migratory patterns or phylogeographical distributions, as well as indirect relationships among species through shared partners. Using a meta-network of hummingbird-plant interaction across Mexico, we illustrate the usefulness of this approach by investigating (1) how biogeographical and morphological factors associate with observed interactions and (2) how species-specific biogeographical characteristics associate with species’ network roles. Our results show that all studied hummingbird and plant species in the meta-network were interrelated, either directly or through shared partners. The meta-network was structured into modules, resulting from hummingbirds and plants interacting preferentially with subsets of species, which differed in biogeographical, and, to a lesser extent, morphological traits. Furthermore, migrants and hummingbirds from Nearctic, Transition, and widespread regions had a higher topological importance in the meta-network. Our study illustrates how meta-networks may contribute to our current knowledge on species’ biogeographical traits and biotic interactions, providing a perspective complementary to local-scale networks.  相似文献   

8.
Ecological indicators are currently developed to account for the different facets of loss of biological diversity due to direct or indirect effects of human activities. Most ecological indicators include species richness as a metric. Others, such as functional traits and phylogenetic diversity, account for differences in species, even when species richness is the same. Here, we describe and apply a different indicator, called morphoscape dimension, accounting for morphological variability across habitats in a geographical region. We use the case of ground beetles (Coleoptera: Carabidae) in four different habitats in the Po Plain in Northern Italy to exemplify how to quantify the magnitude of the morphological space (i.e. the dimension of the morphoscape) occupied by the species in each habitat using geometric morphometrics. To this aim, we employed a variety of metrics of morphological disparity related to univariate size, and more complex multivariate shape and form. Our ‘proof of concept’ suggests that metrics assessing size and form might largely tend to simply mirror the information provided by species richness, whereas shape morphoscape disparity may be able to account for non-trivial differences in species traits amongst habitats. This is indicated by the woodland morphoscape being on average bigger than that of crops, the most species-rich habitat, despite having almost 20% less species. We conclude suggesting that the analysis of morphoscape dimension has the potential to become a new additional and complimentary tool in the hands of conservation biologists and ecologists to explore and quantify habitat complexity and inform decisions on management and conservation based on a wide set of ecological indicators.  相似文献   

9.
 Carotenoid-based integument colour in animals has been hypothesised to signal individual phenotypic quality because it reliably reflects either foraging efficiency or health status. We investigated whether carotenoid-derived yellow plumage coloration of fledgling great tits (Parus major) reflects their nestling history. Great tit fledglings reared in a poor year (1998) or in the urban habitat were less yellow than these reared in a good year (1999) or in the forest. The origin of nestlings also affected their coloration since nestlings from a city population did not improve their coloration when transferred to the forest. Brood size manipulation affected fledgling colour, but only in the rural population, where nestlings from reduced broods developed more yellow coloration than nestlings from increased and control broods. Effect of brood size manipulation on fledgling plumage colour was independent of the body mass, indicating that growth environment affects fledgling body mass and plumage colour by different pathways. Received: 20 March 2000 / Accepted in revised form: 4 September 2000  相似文献   

10.
Communal nesting is a fundamental component of many animal societies. Because the fitness consequences of this behavior vary with the relatedness among nest mates, understanding the kin structure of communally nesting groups is critical to understanding why such groups form. Observations of captive degus (Octodon degus) indicate that multiple females nest together, even when supplied with several nest boxes. To determine whether free-living degus also engage in communal nesting, we used radiotelemetry to monitor spatial relationships among adult females in a population of O. degus in central Chile. These analyses revealed that females formed stable associations of > 2–4 individuals, all of whom shared the same nest site at night. During the daytime, spatial overlap and frequency of social interactions were greatest among co-nesting females, suggesting that nesting associations represent distinct social units. To assess kinship among co-nesting females, we examined genotypic variation in our study animals at six microsatellite loci. These analyses indicated that mean pairwise relatedness among members of a nesting association (r=0.25) was significantly greater than that among randomly selected females (r=–0.03). Thus, communally nesting groups of degus are composed of female kin, making it possible for indirect as well as direct fitness benefits to contribute to sociality in this species.  相似文献   

11.
We investigated the mating patterns in 22 breeding pairs of wild American goldfinches (Carduelis tristis) with respect to their body size, condition, and carotenoid-based, yellow plumage colour. Using reflectance spectrometry, we objectively quantified plumage colours across the bird-visible wavelengths, revealing a unexpected UV peak in the reflectance spectrum from yellow feathers. We summarized our colour measurements using a principal components analysis to create a single variable, carotenoid PC1, that represents the intensity of this carotenoid-based yellow colour, a measure of phenotypic quality in this species. We found no evidence of assortative mating with respect to measures of body size or condition but there was positive assortative mating by carotenoid PC1, such that the yellow plumage colours of males and females were significantly correlated within pairs. We argue that the yellow carotenoid coloration of goldfinches may be important in mutual mate choice and, thus, that sexual selection in this species may act upon female ornamentation, as well as the more obvious plumage signals of males. Because assortative mating results in an increase in genetic variance, we suggest that this might be a mechanism that maintains variance in ornamental traits in spite of the variance-eroding effects of sexual selection.  相似文献   

12.
13.
Complex body designs, such as plumage ornaments in birds, can be described by fractal geometry. These complex patterns could have a role as visual signals during courtship and social interactions, but an empirical validation in the wild is currently lacking. Here, we investigated whether the fractal dimension (FD) of a complex plumage pattern displayed by red-legged partridges Alectoris rufa could function as a potential sexual signal. We captured wild birds early in the breeding season and tested if mated and unmated birds differed in the FD of their conspicuous melanin-based black bib. We also tested if the FD of the black bib was correlated within the pair, looking for evidence of assortative mating based on the expression of this trait. We simultaneously assessed similar effects in other ornamental traits (black bib size, white throat patch and black flank band surface, redness of the eye rings and bill). Mated birds showed higher black bib FD values than unmated ones. Mated males, but not females, also displayed a larger black bib. Moreover, the black bib FD (but not the trait size) and the white throat patch surface showed assortative mating. Finally, females with higher black bib FD showed smaller black flank band surface, suggesting a trade-off in the expression of the two melanin-pigmented plumage traits. This provides unique and novel indication for the shape complexity of a pigmented trait, here described by its fractal dimension, to be potentially under sexual selection in a wild animal.  相似文献   

14.
Non-indigenous species are oftentimes exposed to ecosystems with unfamiliar species, and organisms that exhibit a high degree of phenotypic plasticity may be better able to contend with the novel competitors that they may encounter during range expansion. In this study, differences in morphological plasticity were investigated using young-of-year pumpkinseed sunfish (Lepomis gibbosus) from native North American and non-native European populations. Two Canadian populations, isolated from bluegill sunfish (L. macrochirus) since the last glaciation, and two Spanish populations, isolated from bluegill since their introduction in Europe, were reared in a common environment using artificial enclosures. Fish were subjected to allopatric (without bluegill) or sympatric (with bluegill) conditions, and differences in plasticity were tested through a MANOVA of discriminant function scores. All pumpkinseed populations exhibited dietary shifts towards more benthivorous prey when held with bluegill. Differences between North American and European populations were observed in body dimensions, gill raker length and pelvic fin position. Sympatric treatments induced an increase in body width and a decrease in caudal peduncle length in native fish; non-native fish exhibited longer caudal peduncle lengths when held in sympatry with bluegill. Overall, phenotypic plasticity influenced morphological divergence less than genetic factors, regardless of population. Contrary to predictions, pumpkinseeds from Europe exhibited lower levels of phenotypic plasticity than Canadian populations, suggesting that European pumpkinseeds are more canalized than their North American counterparts.  相似文献   

15.
南四湖流域产水量空间格局与驱动因素分析   总被引:3,自引:0,他引:3  
流域生态系统产水服务功能的空间化和定量化评估,对流域水资源管理、优化配置以及提高流域水生态保护效率具有重要意义。以山东省南四湖流域为研究对象,基于1990-2013年土地利用、降水、蒸散以及土壤属性等基础地理数据,以InVEST模型为基础,评估和模拟南四湖流域近25 a的产水量,并采用ArcGIS分析产水量的空间分布格局以及变化趋势,探讨了降水、地形等自然地理要素以及人口、土地利用和国内生产总值(GDP)等社会经济因素与产水量空间格局动态变化之间的关系,并在此基础上划分出南四湖流域生态系统产水功能区。研究结果表明:流域产水量在空间格局上呈现出由东向西递减的趋势,东部、东北部等山区、丘陵地区产水量高,西部平原地区产水相对较低;受自然地理要素影响,流域产水量空间分布与社会经济发展水平即GDP、人口密度的空间分布格局有较大差异。近25 a来,流域产水量呈现减少趋势,且产水量峰值区域由东北部向偏南地区转移,最低值区由西部向中部地区转移。降水、海拔和坡度等地理环境与产水量的空间变化呈显著正相关,其中降水量的相关程度最强;人口、GDP等社会经济数据与产水量变化也呈显著正相关,主要原因在于城市化的发展,城市建设用地等不透水层增加,促进了流域产水量。研究结果可以为流域水资源政策制定以及社会经济发展规划等宏观决策提供科学支撑。  相似文献   

16.
One of the energetic benefits of daily torpor over prolonged hibernation is that it enables animals to regularly forage and, therefore, replenish food reserves between bouts of torpor. However, little is known about the diet of predators undergoing torpor or whether differences in prey composition among individuals influence torpor characteristics. Here, we test the hypothesis that prey composition affects winter torpor use and patterns of a population of carnivorous marsupial, the brush-tailed mulgara (Dasycercus blythi), in the Great Sandy Desert, Australia. Mulgaras in the study population captured a wide range of prey including vertebrates (mammals, reptiles, birds), seven insect orders, spiders and centipedes. The proportion of vertebrates in the diet was negatively correlated with both frequency of torpor use and maximum bout duration. This variation in torpor use with diet can be explained by the higher energetic content of vertebrates as well as their larger size. Even assuming uniform intake of prey biomass among individuals, those that subsisted on an invertebrate-dominated diet during winter apparently suffered energetic shortages as a result of the scarcity of invertebrate taxa with high energy content (such as insect larvae). Our study is the first to demonstrate a link between diet composition and daily torpor use in a free-ranging mammal.  相似文献   

17.
Dromiciops gliroides is an arboreal marsupial found in the temperate forests of South America (36–43 °S). This species is the sole extant representative of the order Microbiotheria, and is a key seed disperser of many native plant species, including the keystone mistletoe Tristerix corymbosus. Here, we synthesized the current knowledge on the ecological aspects of this species, and compared the available information from Argentina and Chile. Population density (23?±?2 (mean ± SE) individual/ha) and home range (1.6?±?0.6?ha) appear to be relatively similar across a marked ecological gradient in the mainland, but lower densities (7?±?2 individual/ha) and smaller home ranges (0.26?±?0.04?ha) were detected at island sites. We detected regional variation in body condition in Chile, but there were no significant differences across a wider E-W gradient. Movement patterns fit a random walk model; such behavior might have important consequences in shaping plant’s spatial patterns. Although our data suggest that D. gliroides is more tolerant to habitat disturbance than previously thought, its incapability to disperse across non-forested areas suggests that the rapid rate of habitat loss and fragmentation that characterizes southern temperate forests likely poses a serious threat to this species. These ecological similarities are surprising given that forests studied receive dramatically different rainfall and correspond to distinct forest types. The evidence synthetized here dispels some of the myths about this species but also stresses the need for more comprehensive ecological studies across its distribution range.  相似文献   

18.
To determine whether the appearance of a reproductively parasitic tactic varies, and how this variation affects territorial males of the Lake Tanganyika cichlid fish Telmatochromis vittatus, we examined the reproductive ecology of territorial males in Mtondwe and compared it with that of a neighboring Wonzye population, where nest density differs from that at Mtondwe. In Wonzye, with high nest density, male tactics change with their body size from a territorial to a non-territorial parasitic tactic called piracy in which they conquer several nests defended by territorial males and take over the nests while females are spawning. These “pirate” males could decrease the costs incurred by travelling among nests by exclusively targeting aggregations of nests in close proximity while avoiding separate nests. Territorial males in Wonzye sacrifice the potential higher attractiveness offered by large nests and instead compete for nests farther from neighbors on which pirates less frequently intrude. In contrast, the Mtondwe population had lower nest density and piracy was absent. Given that the success of piracy depends on the close proximity of nests, nest density is likely responsible for the observed variation in the occurrence of piracy between the two populations. Furthermore, in Mtondwe, territorial males competed for larger nests and were smaller than the territorial males in Wonzye. Thus, this lower nest density may free territorial males from the selection pressures for increased size caused by both defense against nest piracy and the need to develop into pirates as they grow.  相似文献   

19.

Social interactions may shape brain development. In primitively eusocial insects, the mushroom body (MB), an area of the brain associated with sensory integration and learning, is larger in queens than in workers. This may reflect a strategy of neural investment in queens or it may be a plastic response to social interactions in the nest. Here, we show that nest foundresses—the reproductive females who will become queens but are solitary until their first workers are born—have larger MBs than workers in the primitively eusocial sweat bee Augochlorella aurata. Whole brain size and optic lobe size do not differ between the two groups, but foundresses also have larger antennal lobes than workers. This shows that increased neural investment in MBs precedes social group formation. Larger MBs among foundresses may reflect the increased larval nutrition provisioned to future queens and the lack of social aggression from a dominant queen upon adult emergence.

  相似文献   

20.
Forest carbon (C) sequestration is being actively considered by several states as a way to cost-effectively comply with the forthcoming United States (US) Environmental Protection Agency’s rule that will reduce power plant C emissions by 32% of 2005 levels by 2030. However, little is known about the socio-ecological and distributional effects of such a policy. Given that C is heterogeneous across the landscape, understanding how social, economic, and ecological changes affect forest C stocks and sequestration is key for developing forest management policies that offset C emissions. Using Florida US as a case study, we use US National Forest Inventory Analysis and Census Bureau data in both linear regression and quantile regression analyses to examine the socio-ecological and economic determinants of forest C stocks and its relationship with differing communities. Quantile regression findings demonstrate nonlinearity in the effects of key determinants, which highlight the limitations of regularly used mean-based regression analyses. We also found that forest basal area, site quality, stand size, and stand age are significant ecological predictors of carbon stocks, with a positive and increasing effect on upper quantiles where C stocks are greater. The effect of education was generally positive and mostly significant at upper quantiles, while the effects of income and locations with predominantly minority residents (as compared to whites) were negative. Upper quantiles were also affected by population age. Our findings underscore the importance of considering the broader socio-ecological and economic implications of compliance strategies that target the management of forests for carbon sequestration and other ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号