首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV-absorbing substances in zooxanthellate and azooxanthellate clams   总被引:2,自引:0,他引:2  
The effects of UV-A and UV-B radiation on photosynthesis of zooxanthellae within the siphonal mantle of the giant clam, Tridacna crocea, and in isolation were studied. While UV-B irradiation (2.4 W m−2, 20 min) completely suppressed photosynthesis of the isolated zooxanthellae, it had little effect on their photosynthetic ability if they were irradiated while within the siphonal mantle of the host tissue. Chemical analysis of the siphonal mantle of T. crocea showed the presence of significant amounts of mycosporine-like amino acids (MAAs), which absorb UV-A and -B light. However, no MAA was detected in the isolated zooxanthellae. MAAs were concentrated in the siphonal mantle and kidney tissues in comparison with other tissues. In the siphonal mantle, MAA concentrations were the highest in the outermost surface layer where most of the zooxanthella cells resided. This indicates that the zooxanthellae are protected from UV radiation by a screen of concentrated MAAs in the host clam. Aside from T. crocea, significant amounts of MAAs were found not only in other zooxanthellate clams, such as T. derasa, Hippopus hippopus, Colculum cardissa and Fragum unedo, but also in a closely related azooxanthellate clam, Vasticardium subrugosum. On the other hand, no MAA was detected in any of the zooxanthellae from these zooxanthellate clams. No MAA was detected in the tissues of a deep-sea bivalve, Calyptogena soyoae. Although MAAs seem to block strong UV radiation in the shallow-water clam, they are probably not essential for the clam's life in the dark. MAAs in shallow-water clams may be derived from food and accumulated in their tissues, especially in the siphonal mantle and kidney. Received: 29 November 1996 / Accepted: 13 January 1997  相似文献   

2.
Studies were carried out to determine optimum conditions for the investigation of symbiotic zooxanthellae in vitro and to gain insight into factors influencing release of photosynthate by the symbionts. Zooxanthellae isolated from the reef coral Agaricia agaricites and incubated with an homogenate of host tissue release twice as much photosynthate as controls in seawater. The animal homogenate retained its stimulatory activity for 3 h at room temperature (ca. 26°C). Release of photosynthate was markedly influenced by time after isolation of algae from the host, variation in homogenate concentration, and prolonged exposure to homogenate. Release was not influenced by cell concentration, light intensity, or glycerol in the incubation medium. If zooxanthellae are labelled in vitro with glucose 14C, the principle product released is alanine 14C. The mechanism of action of homogenate on zooxanthellae in vitro is discussed in terms of its effect on algal cell membrane permeability. A preliminary fractionation of host homogenate is described.  相似文献   

3.
The mechanism whereby inorganic carbon (Ci) is acquired by the symbiotic association between the giant clam (Tridacna derasa) and zooxanthellae (Symbiodinium sp.) has been investigated. Ci in the haemolymph of the clam is in equilibrium with the surrounding sea water. The photosynthesis rate exhibited by the intact clam varies as a function of the Ci concentration in the clam haemolymph. The gill tissue contains high carbonic anhydrase activity which may be important in adjusting the Ci equilibrium between haemolymph and sea water. Zooxanthellae (Symbiodinium sp.) isolated from the clam mantle prefer CO2 to HCO 3 - as a source of inorganic carbon. The zooxanthellae have low levels of carbonic anhydrase on the external surface of the cell; however, mantle extracts display high carbonic anhydrase activity. Carbonic anhydrase is absent from the mantle of aposymbiotic clams (T. gigas), indicating that this enzyme may be essential to the symbiosis. The enzyme is probably associated with the zooxanthellae tubes in the mantle. The results indicate that carbonic anhydrase plays an important role in the supply of carbon dioxide within the clam symbiosis.  相似文献   

4.
Distribution and morphology of zooxanthellae were investigated histologically and ultrastructurally in veligers and juveniles of three giant clam species, Tridacna crocea, T. derassa, and T. squamosa. No zooxanthellal cells were associated with gametes. In veliger larvae, zooxanthellae were ingested and digested in the stomach. Within several days after metamorphosis from veliger to a juvenile clam, the zooxanthellal tube, in which zooxanthellae were packed, elongated from the stomach toward the mantle. Zooxanthellae in the tube appeared in a line, and we designated the appearance of the lined zooxanthellae in the mantle of juvenile clams as the first sign of the establishment of symbiosis. The zooxanthellal tubular system developed as the clams grew, particularly in the mantle margin, and then hypertrophied siphonal tissue formed. In zooxanthellal tubes, zooxanthellae usually had intact ultrastructures suggesting that they were photosynthetically active, while the stomach always contained degraded zooxanthellae that were probably discharged from the zooxanthellal tube. Giant clams probably digest zooxanthellae directly, and ingest the secreted photosynthates from zooxanthellae. There may be a selection mechanism to discharge unhealthy zooxanthellae from the mantle into the stomach. In addition to zooxanthellae, digested diatoms and other unidentified digested materials in the stomach suggest that filter-feeding also contributes to giant clam nutrition.  相似文献   

5.
The giant clam Tridacna crocea harbors in the mantle tissue symbiotic microalgae commonly called zooxanthellae. Isolated zooxanthellae release glycerol into the medium in the presence of mantle tissue homogenate (MH), but it is not clear whether the cells do so in situ. In order to determine the photosynthetic products released by zooxanthellae in the mantle of the giant clam we traced photosynthetic fixation products from 13C- and 14C-bicarbonate both in the clam and in isolated zooxanthellae (IZ) in the presence or absence of MH. After 15 min incubation in the absence of MH the IZ released less than 0.6% of the fixed labeled carbon, mainly as glucose. The major intracellular photosynthates were neutral lipids, which constituted 20 to 40% of the total extractable 14C. In the presence of MH, the IZ released up to 5.6% of the total fixed 14C, mostly as glycerol, and the major intracellular photosynthate was glucose. In an intact clam incubated in sea water containing 14C-bicarbonate, 46 to 80% of the fixed 14C was translocated from the zooxanthellae to the host tissues. Most of the 14C in the hemolymph, in the isolated zooxanthellae and in intact mantle tissue (containing zooxanthellae) was recovered as glucose. No 14C-glycerol was detected in the mantle after 1 to 30 min incubation, and, even after 60 min, far less 14C-glycerol was synthesized than by IZ in the presence of MH. The possibility that in clam tissue glycerol is converted to glucose was examined by tracing the labeled carbon from 14C-glycerol injected into the adductor muscle. After 5 min incubation, no labeled glucose was found in the hemolymph, but after 60 min, some 20% was found as glucose. Thin slices containing zooxanthellae, cut from the surface of the mantle, fixed inorganic carbon supplied as NaH14CO3 in the medium and mainly released 14C-glucose. The addition of MH to the surrounding medium did not affect the release rate or form of release product. When the slices were cut into smaller pieces, however, the ratio of glycerol to glucose in the release product increased. These results indicate that in the presence of MH the metabolism of isolated zooxan- thellae was different from that of zooxanthellae in the mantle. In the presence of MH, isolated zooxanthellae release mostly glycerol, whereas in the mantle they release glucose. Received: 18 February 1998 / Accepted: 4 December 1998  相似文献   

6.
The population dynamics of zooxanthellae living in the mantle of a giant clam, Tridacna derasa, was studied. The giant clams with shell lengths of 5 to 6 cm which had been reared in the Palau Mariculture Demonstration Center, in the Republic of Palau, were transferred to aquaria on deck of the R.V. “Sohgen-maru” and kept in running sea water at 29 to 30 °C. Two clams were removed from the aquaria, and zooxanthellae in the mantle were isolated every 2 h for 24 h. Numbers of the zooxanthellae in or not in the cell division stage were counted for calculations of the zooxanthellae population in the mantle and their mitotic index (MI). The MI increased after sunset and reached the maximum values of 6.1 to 11.5% at 03:00 to 05:00 hrs. The specific growth rate, μ, estimated from the MI was 0.083 to 0.14 d−1. Five clams were kept in each of 2 Plexiglas containers in the aquarium for collection of the discharged feces every 3 to 4 h. The discharged zooxanthellae in the feces were counted. The zooxanthellae discharged in 24 h were 0.38 to 1.46% of the total zooxanthella population in the mantle, and 2.7 to 16.9% of the newly formed zooxanthella population in a day. Increase of zooxanthella population in the mantle was estimated from clam shell growth rate and from the correlation between zooxanthella population and clam shell size. Daily increase of zooxanthella population in the mantle was estimated to be approximately 7.6 to 19% of the newly formed zooxanthella population. Therefore, the sum of zooxanthellae populations accounting for daily increase in the mantle and discharge in the feces was 11 to 36% of the newly formed population. About 64 to 89% of the newly formed cells were missing; some of these may have been digested by the clam. Received: 14 July 1996 / Accepted: 19 August 1996  相似文献   

7.
Scyphopolyps and scyphomedusae of Cassiopea andromeda Forskål (Cnidaria, Scyphozoa) containing dinoflagellate endosymbionts (zooxanthellae) were investigated for rates and pathways of carbon fixation. Photosynthesis by the algae, accounting for 80 and 15 mol C h-1 on a dry weight basis in medusae and polyps, respectively, by far exceeds dark incorporation of inorganic carbon by the intact association. Photosynthetic carbon fixation is operated via C3 pathway of carbon reduction. DCMU-treatment (1×10-6 M and 1×10-5 M) completely inhibits light-dependent carbon assimilation. Major photosynthates presumably involved in a metabolite flow from algal symbionts to animal tissue are glycerol and glucose. A total of 5–10% net algal photosynthate appears to be seleased in vivo to the host. This is probably less than the energy supply ultimately required for the nutrition of the polyps and medusae. The presence of zooxanthellae proved to be indispensable for strobilation in the scyphopolyps. However, photosynthesis by algal symbionts as well as photosynthate release is obviously not essential for the initiation of ephyrae as is shown by DCMU-treatment, culture in continous darkness, and aposymbiotic controls. It is therefore concluded that strobilation is supported, but not triggered by algal photosynthetic activity. The induction of strobilation thus seems to depend on a more complex system of regulation.  相似文献   

8.
The rates of photosynthesis and dark respiration for 7 marine algae and 1 fresh-water alga were measured and compared. The dinoflagellates Glenodinium sp. and zooxanthellae have high dark respiration rates relative to photosynthetic rates, which may decrease their net growth rates. Photorespiration in the 8 algal species was studied by examining the effects of the concentration of oxygen on the rates of photosynthesis, on the incorporation of 14CO2 into the photorespiratory pathway intermediates glycine and serine, and on the postillumination burst of carbon dioxide production and oxygen consumption. A combination of these results indicates that all the algae tested can photorespire, but that Glenodinium sp., Thalassiosira pseudonana, and zooxanthellae either have a photorespiratory pathway different from that proposed for freshwater algae (Tolbert, 1974), or an additional pathway for glycolate metabolism.  相似文献   

9.
From measured diel photosynthesis and respiration rates, using oxygen electrodes, estimates of carbon flux between symbiotic algae (zooxanthellae) and host animal are presented for the marine scyphomedusan Mastigias sp. from a marine lake in Palau, Western Caroline Islands, during February and March 1982. The carbon budgets calculated for these lake medusae indicate that carbon fixed photosynthetically by zooxanthellae and made available to the host may satisfy up to 100% of the host's daily metabolic carbon demand (CZAR). The stable carbon isotope (13C) signature of the mesogleal carbon of lake Mastigias sp. was close to that of the zooxanthellae, supporting the interpretation that while these medusae may feed holozoically, some of their carbon comes from their symbionts. The diel photosynthesis, respiration, and preliminary estimates of carbon budgets of three individuals of another ecotype of Mastigias sp. collected from nearby oceanic lagoons are also given. Photosynthesis of lagoon medusae was generally greater than that for lake medusae of similar size, and lagoon medusae were phototrophic with respect to carbon, with commensurately greater CZAR values. Carbon translocated from the symbiotic algae also may contribute to the growth requirements of both lake and lagoon medusae. From carbon flux data, the lake jellyfish were estimated to contribute about 16% to the total primary productivity of their marine lake habitat.  相似文献   

10.
Tracer kinetic analysis of radioisotope incorporation into dissolved organic compounds reveals two distinct patterns of photosynthate release by macroalgae. In experiments employing Sargassum lacerifolium, dissolved organic carbon was produced at a constant rate during light incubations. Steady state rates of production were never achieved in experiments employing either Ecklonia radiata (Turn.) J. Agardh. or Ulva lactuca L. Analysis of the time-varying radioactivity curves obtained in experiments using these algae always resulted in models consistent with dissolved organic carbon production being an autocatalytic process. Preincubation of U. lactuca in the dark resulted in a diminished (ca. 40%) rate of dissolved organic carbon production during the subsequent light incubations. In no case did the radioisotope content of the dissolved organic carbon approach a limiting value, indicating that in contrast to phytoplankton, uptake rates of photosynthate by macroalgae are always less than the rates of production.  相似文献   

11.
Carbonic anhydrase (CA, EC 4.2.1.1) activity was detected in 22 species of tropical cnidarians which contain endosymbiotic dinoflagellates (=zooxanthellae). CA activity was 2 to 3 times higher in animal tissue than in algae and ca. 29 times higher in zooxanthellate than azooxanthellate species. It was also higher in the zooxanthellate tentacle tissue than in the azooxanthellate column tissue of the anemone Condylactis gigantea. CA was therefore significantly related to the presence of endosymbiotic algae. Further results indicated that CA functions in the photosynthetic carbon metabolism of zooxanthellate cnidarians as evidenced by (1) low CA activity in shade-adapted and deep water colonies compared to the more productive shallow water, light-adapted colonies of the coral Stylophora pistillata, and (2) the 56 to 85% reduction in photosynthetic carbon assimilation by zooxanthellae in situ in the presence of Diamox, an inhibitor of CA. Although CA has been proposed to function in calcification, its association with zooxanthellae and photosynthetic activity in both calcifying and non-calcifying associations suggests a role in photosynthetic metabolism of algal/cnidarian symbioses. It is proposed that CA acts as a CO2 supply mechanism by releasing CO2 from bicarbonate, and enabling zooxanthellae to maintain high rates of photosynthesis in their intracellular environment.  相似文献   

12.
When symbiotic dinoflagellate algae (Symbiodinium sp., isolated from the coral Plesiastrea versipora) were incubated with NaH14CO3 in the light in seawater, they released 22.69±9.16 nmol carbon/106 algae. Release of photosynthetically fixed carbon was stimulated more than six-fold for algae incubated in host-tissue homogenate (148.54±97.03 nmol C/106 algae) and more than four-fold (102.00±49.16 nmol C/106 algae) for algae incubated in a low molecular weight fraction (≤1 000 M r ) prepared from host homogenate. Soluble released 14C-labelled products, as determined by chromatography and autoradiography, were the same when algae were incubated in either host homogenate or the low molecular weight fraction. After 4 h incubation in the light (300 mol photons m−2 s−1),␣intracellular␣glycerol increased in algae incubated with the low molecular weight fraction (an increase of 0.39 to␣0.67 nmol glycerol/106 algae) compared with little or no increase in algae incubated in seawater (0 to 0.12 nmol glycerol/106 algae). Partial inhibition of triglyceride synthesis (up to 51%) was also observed when algae were incubated in the low molecular weight fraction. All these effects are the same as those observed when algae were incubated in host homogenate. These data indicate that the “host release-factor” activity of P.␣versipora is a compound of low molecular weight. Received: 13 February 1997 / Accepted: 24 October 1997  相似文献   

13.
Surface tissue of the reef coral Pocillopora capitata contained approximately 34% lipid on a dry weight basis. Of this, 75% was storage lipid (wax ester and triglyceride) and 25% structural (phospholipid, galactolipid, etc.). Based on chlorophyll a: lipid ratios of intact coral and isolated zooxanthellae, it was determined that over 90% of the storage lipid resided in the host tissue. One half of the structural lipids was found in the host and the other in the symbiotic algae. Gentle fractionation of coral tissue indicated that zooxanthellae possessed less than 14% of the total coral protein. Coral tips and isolated zooxanthellae were incubated with sodium acetate-1-14C in light and dark to obtain lipogenic rates and proportions of fatty acids and lipid classes synthesized. The rate of lipid synthesis from acetate-1-14C by intact coral was stimulated three-fold in the light (1200 lux), which indicated that the majority of coral lipogenesis occurred in the zooxanthellae. Intact coral triglycerides contained ca. 68% of the 14C-activity and wax esters ca. 21%. Zooxanthellae isolated by the Water Pik technique synthesized negligible amounts of wax ester, which implied that wax ester synthesis was a property of the animal tissue. Isolated zooxanthellae and intact coral synthesized identical triglyceride fatty acids from acetate-1-14C. This study provides evidence for a carbon cycle between host and symbiont whereby the zooxanthellae take up host-derived carbon (probably in the form of acetate), synthesize fatty acids using their photosynthetically derived energy, and return the lipid to the host where it appears as wax ester and triglyceride.  相似文献   

14.
The effect of ammonium (5, 10 M N) and phosphate (2, 5, 10 M P) on the growth of the giant clam Tridacna gigas and its symbiotic dinoflagellate Symbiodinium sp. was examined. A 3 mo exposure to these nutritients significantly increased the N or P composition of the soft tissues, as reflected in a corresponding change in C:N:P ratio. Furthermore, exposure to N or N+P markedly increased the amount of soft tissue, but P alone did not, demonstrating that increased availability of inorganic nitrogen enhances tissue growth of the clam host. With addition of N, or N+P, there was a significant increase in the total number of zooxanthellae per clam, with a corresponding decrease in chlorophyll a (chl a) content per zooxanthella. However, only with N+P was there an increase in the zooxanthellae mitotic index. The inverse relationship between zooxanthellae number and chl a per zooxanthella is consistent with phytoplankton studies indicating conditions of nutrient-limitation. Furthermore, the unaffected C:N:P composition of the zooxanthellae and their relatively low specific-growth rates (4 to 10%) also suggest that they are nutrient-limited in vivo. In particular, their high mean C:N:P ratio of 303:52:1 indicates that, relative to C, they are much more depleted in P and less in N than are free-living phytoplankton. Furthermore, polyphosphates (phosphate reserves) were undetectable, and the activity levels of acid phosphatase in the zooxanthellae were relatively high and not influenced by the host's exposure to increased P concentrations in the sea water, implicating the clam host in active regulation of P availability to its symbiotic algae. This is strong evidence that N-limitation of clam zooxanthellae is a function of the availability of ammonium to the symbiosis while, irrespective of nutrient levels in sea water, clam zooxanthellae still show characteristics of P-limitation.  相似文献   

15.
Glycerol has been traditionally viewed as the main form of carbon translocated from zooxanthellae to the coelenterate host. Most of this glycerol was postulated to be used by the coelenterate host for lipid synthesis. Recent work suggests that large amounts of photosynthetically fixed carbon is synthesized into lipid in the algae, and then translocated as lipid droplets to the host. These two hypotheses of carbon translocation are not mutually exclusive, but to reconcile them the role of glycerol must be reevaluated. In this study the short term metabolic fate of uniformly labelled 14C-glycerol, 14C-bicarbonate, and 14C-acetate was examined in zooxanthellae and coelenterate host tissue isolated from Condylactis gigantea tentacles. When host and algal triglycerides, synthesized during 90-min light and dark incubations in 14C-bicarbonate and 14C-acetate, were deacylated, more than 80% of the activity was found in the fatty acid moiety. In contrast, triglycerides isolated from zooxanthellae and coelenterate host tissue incubated in 14C-glycerol in the dark for 90 min were found to have more than 95% of their radioactivity in the glycerol moiety. During the 90-min 14C-glycerol incubations in the light, the percentage of radioactivity in the fatty acid moiety of zooxanthellae triglycerides increased to 37%. The percentage of radioactivity in the host tissue triglycerides fatty acid moiety stayed below 5% during the 90-min 14C-glycerol incubations in the light. These results show that neither the zooxanthellae nor the host can rapidly convert glycerol to fatty acid. Radioactivity from 14C-glycerol, which does eventually appear in host lipid, may have been respired to 14CO2, then photosynthetically fixed by the zooxanthellae and synthesized into lipid fatty acid.  相似文献   

16.
The usefulness of Fluorinert for the extraction of Acropora formosa polyp tissue and zooxanthellae was demonstrated. The latter remain intact, with no leakage of metabolites, and the polyp tissue can be extracted in a minimal volume. Intact A. formosa and its isolated zooxanthellae were incubated in the light with sodium [14C]bicarbonate for 5 s to 15 min and the kinetics of carbon-14 fixation was determined. The isolated zooxanthellae showed a linear response for carbon fixation, whilst the zooxanthellae in the intact association showed a lag period of 1 to 2 min, containing only 12% of the total fixed carbon in the first 1 min. After 10 min, the distribution of fixed carbon between the symbiotic partners was approximately even and the total carbon fixed was in a range similar to that fixed by the isolated zooxanthellae. A pulse-chase experiment showed rapid movement of fixed carbon from the polyp tissue to the zooxanthellae after the 30 s pulse. The paper discusses two possible explanations for the observed results.  相似文献   

17.
The effect of phosphate on the giant clam Tridacna gigas and on its symbiotic dinoflagellate Symbiodinium sp. was compared with that on cultured Symbiodinium sp. originally isolated from the same clarn species. Incubation of whole clams in elevated phosphate (10 M) reduced their capacity for phosphate uptake, but the uptake capacity of the clam's zooxanthellae population was not influenced. In addition, there was no change in the zooxanthellae density and the N:P ratio, of these algae., On the other hand, cultured zooxanthellae were influenced by the phosphate regimen of their culture medium. Compared with controls (0 M P), addition of 10 M phosphate to the culture medium caused an increase of 100% in cell density and decreases of 50% in the N:P ratio, and 80% in the phosphate-uptake capacity of the zooxanthellae. Zooxanthellae freshly isolated from the clams exhibited properties similar to those of zooxanthellae cultured in the absence of phosphate. These results demonstrate that the zooxanthellae population of T. gigas have limited access to the inorganic phosphate in sea water and the phosphate reserves within the animal host.  相似文献   

18.
Echinoderms are major predators of anemones in temperate ecosystems. The fate of two algae, zooxanthellae and zoochlorellae, after their host anemone (Anthopleura elegantissima Brandt) was consumed by the leather star Dermasterias imbricata Grube was determined in experiments conducted in July and August 2004. Productivity, photosynthetic pigments, and mitotic index (percent of cells dividing) were used as indicators of algal health; algae released after leather stars consumed their host were compared with algae freshly isolated from anemones. Two types of waste products contained algae: pellets resulting from extraoral digestion, and feces. Zooxanthellae and zoochlorellae isolated from these waste products were photosynthetic, although to different extents. For algae from feces and pellets, light-saturated photosynthetic rates (P max) were 85 and 13%, respectively, of P max of freshly isolated zooxanthellae; and were 20 and 46%, respectively, for zoochlorellae. The photosynthetic pigments and mitotic index (percent of dividing cells) were not altered by the feeding activities of the leather star. These results show that algae released by seastar predation on their hosts remain viable, and are hence available for establishing symbioses in A. elegantissima and other potential hosts.  相似文献   

19.
The soft coral Heteroxenia fuscescens (Ehrb.) and its isolated zooxanthellae (endosymbiotic dinoflagellates) were investigated with particular regard to uptake and utilization of exogenously supplied 14C-acetate in the light and in the dark. The incorporation of 14C from 14C-acetate into the host tissue and into the zooxanthellae was consistently much higher in the light than in the dark. The incorporated 14C-acetate was rapidly metabolized by the host and algae and was recovered from different assimilate fractions. The major proportion of radiocarbon from metabolized 14C-acetate was located in host tissue. The CHCl3-soluble fraction composed of diverse lipids showed the strongest 14C-labelling. Zooxanthellae isolated prior to incubation accounted for about 80% of the acetate incorporation recorded for zooxanthellae in situ (in vivo). It is concluded from a comparison of acetate incorporation and conversion under light and dark conditions that most of the lipid reserve of the host tissue originates from fatty acids, which are synthesized within the algal symbionts and are then translocated to the heterotrophic partner via extrusion. The acetate units needed for lipid synthesis are obtained by absorption of free acetate from dissolved organic matter (DOM) in the seawater as well as by photosynthetic assimilation of inorganic carbon. Thus, in H. fuscescens, lipogenesis is operated as a light-driven process to which the zooxanthellae considerably contribute assimilatory power by performing fatty acid synthesis and translocation of lipid compounds to their intracellular environment (host cell). A metabolic scheme is proposed to account for the different pathways of carbon conversion observed in H. fuscescens. The incubations took place in August 1980 and the analytical part from October 1980 to January 1984.  相似文献   

20.
The soft coral Anthelia glauca Lamarck, 1816, of the family Xeniidae, is found on the reefs of KwaZulu-Natal, South Africa. Its gastrodermal cells contain numerous endosymbiotic unicellular algae (zooxanthellae). A. glauca is a gonochoric species that simultaneously broods its planulae within the pharyngeal cavity of the polyps. Symbiotic algae appear with zygote formation within the pharynx, embedded in amorphous material. The algal cells adhere to the ciliated ectodermal surface of immature planulae and are most probably endocytosed by them. Zooxanthellae are translocated towards the basal part of the ectoderm. Gaps are subsequently opened in the mesoglea into which symbionts surrounded by ectodermally derived material, including plasma membrane, pass. The basal membrane of endodermal cells disintegrates, and the algae bulge into spaces formed in the underlying endoderm. Throughout the process, each zooxanthella resides within a vacuolar membrane in the detached ectodermal cytoplasm. The acquisition process is essentially one in which zooxanthellae are translocated from the pharyngeal cavity into the ectoderm and then through the mesoglea into the endoderm, culminating in the final symbiotic state. The direct transmission of symbiotic algae to the eggs or larvae probably provides the most efficient means whereby zooxanthellae are acquired by the host progeny. Received: 15 July 1997 / Accepted: 25 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号