首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A spatial statistical technique, Geographically Weighted Regression (GWR) is applied to study the spatial variations in the relationships between four land use indicators, including percentages of urban land, forest, agricultural land, and wetland, and eight water quality indicators including specific conductance (SC), dissolved oxygen, dissolved nutrients, and dissolved organic carbon, in the watersheds of northern Georgia, USA. The results show that GWR has better model performance than ordinary least squares regression (OLS) to analyze the relationships between land use and water quality. There are great spatial variations in the relationships affected by the urbanization level of watersheds. The relationships between urban land and SC are stronger in less-urbanized watersheds, while those between urban land and dissolved nutrients are stronger in highly-urbanized watersheds. Percentage of forest is an indicator of good water quality. Agricultural land is usually associated with good water quality in highly-urbanized watersheds, but might be related to water pollution in less-urbanized watersheds. This study confirms the results obtained from a similar study in eastern Massachusetts, and so suggest that GWR technique is a very useful tool in water environmental research and also has the potential to be applied to other fields of environmental studies and management in other regions.  相似文献   

2.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   

3.
Urban land use and land cover change significantly affect spatial and temporal patterns of runoff, which in turn impacts surface water quality. With the exponential growth in urban areas over the past three decades, changes in land use and land cover to cater for the growth of cities has been a conspicuous spectacle in urban spaces. The main goal of this study was to assess the impacts of land cover change on runoff and surface water quality using a partial area hydrology framework. The study employed ArcHydro GIS extension and a modified version of Long-Term Hydrologic and Nonpoint Source Pollution model (L-THIA-NPS) in estimating runoff and nonpoint source pollutant concentration around Lake Calumet between 1992 and 2001. Data employed include National Land Cover Data set, rainfall data, digital elevation model (DEM), Soil Survey Geographic (SSURGO) data, and The United States Environmental Protection Agency’s STORET (storage and retrieval) water quality data. The model was able to predict surface water quality reasonably well over the study period. Sensitivity analysis facilitated a manual calibration of the model. Model validation was executed by comparing simulated results following calibration and observed water quality data for the study area. The study demonstrates that the level of concentration of nonpoint source pollutants in surface water within an urban watershed heavily depends on the spatiotemporal variations in areas that contribute towards runoff compared to the spatial extent of change in major land use/land cover.  相似文献   

4.
Seasonal and spatial variations in major ion chemistry and isotope composition in the rural-urban catchment of the Shigenobu River were monitored to determine the influences of agricultural and urban sewage systems on water quality. Temporal patterns of biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) were examined at four sites in the rural-urban catchment. Urban land cover, incorporating the effects of increased population, domestic water use, and industrial wastewater, was positively associated with increases in water pollution and was included as an important explanatory variable for the variations in all water quality parameters. Significant trends were found in each parameter. BOD concentrations ranged widely, and were high in urban regions, due to the presence of a waste water treatment plant. TN and SS showed various trends, but did not vary widely, unlike TP. TP concentrations varied greatly, with high concentrations in cultivated areas, due to fertilizer use. Local water quality management or geology could further explain some of the variations in water quality. Non-point-source pollution exhibited strong positive spatial autocorrelation, indicating that incorporating spatial dimensions into water quality assessment enhances our understanding of spatial patterns of water quality. Data from the Ministry of Land Infrastructure and Transport (MLIT) and Environment Ministry (EM) were used to investigate trends in land management. Stepwise regression analysis was used to test the correlation between specific management practises and substance concentrations in surface water and sediment. MLIT and EM data for 1981-2003 showed an increase in TN, TP, and SS concentrations in surface water. High levels of fertilizer in dormant sprays and domestic water use were associated with high pesticide concentrations in water and sediment. This paper presents a novel method of studying the environmental impact of various agricultural management practises and recommends a management strategy that combines the use of reduced-risk pesticides with irrigation and non-irrigation periods in paddy fields.  相似文献   

5.
Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed.  相似文献   

6.
ABSTRACT. Characterizing ecological indicators such as water quality is necessary to effectively manage human-dominated systems such as the New Jersey Pinelands. Pinelands surface waters are naturally acidic and low in nutrients and other dissolved substances. Water quality for 14 Pinelands stream sites monitored by the U.S. Geological Survey was characterized in relation to land use. A gradient of increasing pH, specific conductance, and concentration of dissolved calcium, dissolved magnesium, total nitrite + nitrate-nitrogen, total ammonia-nitrogen, and total phosphorus was associated with a watershed disturbance gradient of increasing land use intensity and waste water flow. These two parallel gradients emphasized the significant effect that watershed disturbance can have on natural water chemistry in the Pinelands. The results of this study can be applied to planning and regulatory programs in the Pinelands.  相似文献   

7.
Differences exist in the spatial structure of cities in both the developed and developing world owing to the contradistinctive nature of their urban growth processes. The structure of Nigerian cities is characterised by the preponderance of mixed land uses resulting primarily due to the organic nature of city growth and more fundamentally, owing to the dynamics of informal urban economic activities. This paper examines mixed land‐use patterns in selected Nigerian cities and appraises their relevance in the general city growth process. By suggesting principles and speculative spatial patterns expressing desirable use combinations, an attempt is made to rationalise the utility of the concept such that its environmental impact is understood and given planning resolution.  相似文献   

8.
Increasing concern about the problems caused by urban sprawl has encouraged development and implementation of smart growth approaches to land use management. One of the goals of smart growth is water resources protection, in particular minimizing the runoff impact of urbanization. To investigate the magnitude of the potential benefits of land use planning for water resources protection, possible runoff impacts of historical and projected urbanization were estimated for two watersheds in Indiana and Michigan using a long term hydrological impact analysis model. An optimization component allowed selection of land use change placements that minimize runoff increase. Optimizing land use change placement would have reduced runoff increase by as much as 4.9 percent from 1973 to 1997 in the Indiana study watershed. For nonsprawl and sprawl scenarios in the Michigan watershed for 1978 to 2040, optimizing land use change placement would have reduced runoff increase by 12.3 percent and 20.5 percent, respectively. The work presented here illustrates both an approach to assessing the magnitude of the impact of smart growth and the significant potential scale of smart growth in moderating runoff changes that result from urbanization. The results of this study have significant implications for urban planning.  相似文献   

9.
In a context of increasing urban sprawl and water scarcity common to other Mediterranean cities, this article focuses on the urban parks in the Region of Barcelona (Catalonia, Spain) to examine how these parks are distributed in this region and to assess whether their design and management follow criteria adapted to Mediterranean environmental conditions, especially in what concerns water use. In order to evaluate the environmental performance of these parks, we selected four factors possibly influencing the adoption of park management practices at the local scale: urban density, population size of the municipality, municipal income per capita, and political orientation of the city council. After determining the location and area of urban parks in the region, we correlated these four explanatory factors with several management tasks extracted from two different samples of parks (one of 315 parks and another of 125 parks) and a survey of 86 city councils. Results show that, in general, urban parks were more frequent in large, dense, and left/green municipalities but that environmentally sound practices were more common in small and low-density municipalities. We conclude that changes in certain practices (especially the substitution of high water demanding species) could improve significantly the environmental performance of public spaces in large urban areas with Mediterranean climates. Our observations may be pertinent for other cities interested in the provision of environmental public goods such as parks that necessitate water for irrigation.  相似文献   

10.
There is a lack of information on urban heat island impact on the thermal environment due to low populated urban sprawl, although densely populated urban sprawl impact has been identified by several researchers. The Takamatsu area has recently developed in a low populated urban sprawl style without any increase in population. This paper examined the impact of a low populated urban sprawl on the thermal environment through an analysis of the last 30 years data set and investigated the contribution of vegetation fraction and population density to the temperature trend. As a consequence, it was shown that one of the most significant causative factors of temperature increase is an expansion of non-vegetated area even without population growth. This result implied that vegetated zones should be maintained in urban areas in order to realize sustainable urbanization.  相似文献   

11.
Conventional indicators of water use for urban areas account primarily for direct water use. In contrast, our objective here is to employ the water footprint (WF) concept and methodology to include the virtual or indirect water use to assess the production‐side and consumption‐side WF of 65 United States (U.S.) cities. The 65 cities include the largest metropolitan areas and some of the major mid‐sized cities in the U.S. We use metropolitan areas to define our city boundaries as this is the native spatial resolution of the main datasets used. To estimate the urban WFs, we integrated large and disparate datasets, including commodity flow (agricultural, livestock, and industrial commodities), water use, and socioeconomic data. By analyzing the estimated WF values, we found indirect water use accounts on average for 66% of the WF of consumption. We found some cities are net virtual water exporters (11 of 65) because they rely heavily on direct water uses or are heavy producers of industrial commodities. Also, WF patterns vary widely across the U.S. but regional patterns seem to emerge. For example, the dense cities of the U.S. northeast megaregion have a significantly low per capita WF relative to the other cities, while cities in the Gulf Coast megaregion have a significantly higher industrial WF of production and consumption. Furthermore, there is inequality in the WF of consumption where a few cities account for a disproportionate share of the total U.S. urban water uses.  相似文献   

12.
Water resources are increasingly impacted by growing human populations, land use, and climate changes, and complex interactions among biophysical processes. In an effort to better understand these factors in semiarid northern Utah, United States, we created a real‐time observatory consisting of sensors deployed at aquatic and terrestrial stations to monitor water quality, water inputs, and outputs along mountain to urban gradients. The Gradients Along Mountain to Urban Transitions (GAMUT) monitoring network spans three watersheds with similar climates and streams fed by mountain winter‐derived precipitation, but that differ in urbanization level, land use, and biophysical characteristics. The aquatic monitoring stations in the GAMUT network include sensors to measure chemical (dissolved oxygen, specific conductance, pH, nitrate, and dissolved organic matter), physical (stage, temperature, and turbidity), and biological components (chlorophyll‐a and phycocyanin). We present the logistics of designing, implementing, and maintaining the network; quality assurance and control of numerous, large datasets; and data acquisition, dissemination, and visualization. Data from GAMUT reveal spatial differences in water quality due to urbanization and built infrastructure; capture rapid temporal changes in water quality due to anthropogenic activity; and identify changes in biological structure, each of which are demonstrated via case study datasets.  相似文献   

13.
Forecasting land use change and its environmental impact at a watershed scale   总被引:18,自引:0,他引:18  
Urban expansion is a major driving force altering local and regional hydrology and increasing non-point source (NPS) pollution. To explore these environmental consequences of urbanization, land use change was forecast, and long-term runoff and NPS pollution were assessed in the Muskegon River watershed, located on the eastern coast of Lake Michigan. A land use change model, LTM, and a web-based environmental impact model, L-THIA, were used in this study. The outcomes indicated the watershed would likely be subjected to impacts from urbanization on runoff and some types of NPS pollution. Urbanization will slightly or considerably increase runoff volume, depending on the development rate, slightly increase nutrient losses in runoff, but significantly increase losses of oil and grease and certain heavy metals in runoff. The spatial variation of urbanization and its impact were also evaluated at the subwatershed scale and showed subwatersheds along the coast of the lake and close to cities would have runoff and nitrogen impact. The results of this study have significant implications for urban planning and decision making in an effort to protect and remediate water and habitat quality of Muskegon Lake, which is one of Lake Michigan's Areas of Concern (AOC), and the techniques described here can be used in other areas.  相似文献   

14.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

15.
This research investigates urban sprawl in the Greater Toronto Area (GTA) between 1985 and 2005 and the nature of the resulting landscape fragmentation, particularly with regard to the Oak Ridges Moraine (ORM), an ecologically important area for the region. Six scenes of Landsat TM imagery were acquired in summer of 1985, 1995, and 2005. These images and their texture measures were classified into eight land cover classes with very satisfactory final overall accuracies (93–95?%). Analysis of the classifications indicated that urban areas grew by 20?% between 1985 and 1995 and by 15?% between 1995 and 2005. Landscape fragmentation due to spatio-temporal land cover changes was evaluated using urban compactness indicators and landscape metrics, and results from the latter were used to draw conclusions about probable environmental impact. The indicator results showed that urban proportions increased in nearly all areas outside of the metropolitan center, including on portions of the ORM. The landscape metrics reveal that low density urban areas increased significantly in the GTA between 1985 and 2005, mainly at the expense of agricultural land. The metric results indicate increased vulnerability and exposure to adverse effects for natural and semi-natural land cover through greater contrast and lowered connectivity. The degree of urban perimeter increased around most environmentally significant areas in the region. Changes like these negatively impact species and the regional water supply in the GTA. Further investigation into specific environmental impacts of urban expansion in the region and which areas on the ORM are most at risk is recommended.  相似文献   

16.
In this study, we examine the impact on water quality of urbanization using disaggregate data from Wake County, North Carolina. We use a unique panel data set tracing the conversion of individual residentially zoned land parcels to relate the density of residential development and the change in residential land use to three measures of water quality. Using a spatial econometrics model, we relate spatially and temporally referenced monitoring station readings to our measures of residential land use while controlling for other factors affecting water quality. We find that both the density of residential land use and the rate of land conversion have a negative impact on water quality. The impacts of these non-point sources are found to be larger in magnitude than those from urban point sources.  相似文献   

17.
Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.  相似文献   

18.
Traditional bacterial indicators used in public health to assess water quality and the Biolog system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems.  相似文献   

19.
Whether a city develops into a more compact one with a higher density or a more sprawling one may affect multiple aspects of the urban environment, including ecosystem health, greenhouse gas emissions, and quality of life. Using panel data gathered from China's cities from 2000 to 2010, we take advantage of the significant variation in the temporal change of density across cities to estimate the relationship between gross urban population density and multiple indicators of urban greenness. Fixed‐effects estimates support the widely held belief that density improves air quality and reduces the per capita carbon footprint. Results also suggest that higher density reduces the growth of road infrastructure and vehicle ownership and promotes walking. While density often translates into proximity and accessibility, higher density does reduce a city's per capita urban park and green space. This study strengthens the urban policy and planning literature with much needed longitudinal evidence. Our overall findings support higher density as opposed to lower density urban development in China.  相似文献   

20.
The spatial relationships between land uses and river-water quality measured with biological, water chemistry, and habitat indicators were analyzed in the Little Miami River watershed, OH, USA. Data obtained from various federal and state agencies were integrated with Geographic Information System spatial analysis functions. After statistically analyzing the spatial patterns of the water quality in receiving rivers and land uses and other point pollution sources in the watershed, the results showed that the water biotic quality did not degrade significantly below wastewater treatment plants. However, significantly lower water quality was found in areas downstream from high human impact areas where urban land was dominated or near point pollution sources. The study exhibits the importance of integrating water-quality management and land-use planning. Planners and policy-makers at different levels should bring stakeholders together, based on the understanding of land-water relationship in a watershed, to prevent pollution from happening and to plan for a sustainable future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号