首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
炼油废水微生物燃料电池启动及影响因素   总被引:1,自引:0,他引:1  
以炼油废水为碳源,构建双室填料型微生物燃料电池,考察接种液、外接电阻等电池启动条件,以及电导率、pH值和缓冲溶液强度等溶液性质对电池产电性能的影响。利用微生物燃料处理炼油废水,COD去除率(52±4)%,含油量去除率(81.8±3)%;利用废水中存在的原生菌即可启动电池,但启动期长,外加接种液可快速启动电池;启动时外接电阻的大小对电池稳定运行后的输出功率有明显影响,对电池内阻影响相对较小,当启动外接电阻为2 000Ω,电池输出功率最大,为288 mW/m3;随阳极溶液电导率电池增大,电池内阻降低,输出功率升高;pH值变化对电池阳极电势影响较大,进而影响电池输出,当溶液pH为9时,电池输出电压最大(388 mV),pH过高或过低均不利于电池产电;随着缓冲强度的增大,电池输出电压增大,且PBS缓冲强度的增大可从电导率增大和改善质子传递条件两方面提高电池的输出功率。  相似文献   

2.
以双室无介体微生物燃料电池构建了BOD检测系统,研究了阴极流量、有机物浓度(BOD)及阳极流量的变化对系统响应信号(电池电压)的影响,并考察了系统响应信号与BOD浓度的对应关系。结果表明:阴极流量在1.5~5mL/min时,阴极流量变化对响应信号具有显著的影响,且响应信号随阴极流量增大而增大;当阴极流量由5 mL/min增加到10 mL/min时,阴极流量变化对响应信号影响不显著。BOD浓度在10~150 mg/L时,响应信号随底物浓度增加而升高,而BOD浓度大于150 mg/L时,BOD浓度变化对响应信号没有显著影响。当BOD浓度较高时,阳极流量变化对响应信号影响不大,但当BOD浓度较低时,阳极流量变化对响应信号有显著影响,且响应信号随阳极流量增大而增加。电池稳态电压与BOD浓度在10~150 mg/L范围内成指数衰减关系,而电池电压的初始变化速率与BOD浓度在50~200 mg/L范围有线性响应。  相似文献   

3.
在高650 mm、有效容积1 280 mL的液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFC)中,研究了燃料电池串并联产电和有机污水处理性能,同时考察了电极面积、活性炭装填体积、温度等因素对产电性能的影响。结果表明,将燃料电池串联,总电压等于3个单级电池的电压之和,约为2 100 mV,最大功率为0.12 mW,而单级电池最大功率为0.05 mW。并联时,输出电压为800 mV,和单级电池输出电压大体相当,而电流为单级电流的2倍。阳极面积增加1倍,产电量增大了30%;电压随活性炭装填体积的增大而增大;温度为40℃时,燃料电池的产电性能最好。  相似文献   

4.
微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响。利用竹炭比表面积大、吸附能力强等特性,将其作为"三合一"膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力。实验结果表明,加入竹炭至阳极室后,MFC最高输出电压(外接电阻1 000Ω时)由0.280V增大到0.387V,提高了38.2%,并且输出电压更加稳定;而最大功率密度也由原来的0.22W/m3增大到1.42W/m3,同时内阻降低了80.85%(由235Ω降为45Ω);库仑效率由15.0%增大到25.6%。说明MFC阳极室填充竹炭可以显著促进MFC的产电性能。  相似文献   

5.
对ABR反应器的水力流态进行了示踪剂试验,分析了特征截面面积对ABR水力特性的影响,采用停留时间分布(RTD)法研究了不同进水COD浓度和HRT条件下ABR反应器的水力特性,结果表明:不同进水COD浓度时ABR反应器的RTD曲线相似,表明进水COD浓度不是影响ABR水力特性的主要因素;不同HRT条件下RTD曲线差异很大,表明HRT对ABR的水力特性影响较大,随着水力停留时间的延长,Ⅳ值增大,1/Pe减小,ABR的流态趋于推流流态,随着HRT的缩短,Ⅳ值减小,1/Pe数增大,ABR反应器趋于完全混合流态。  相似文献   

6.
微生物燃料电池(MFC)在处理污染废水的同时还能产生电能,成为环境和能源领域的研究热点之一。结合典型MFC结构,分别介绍了阳极室、阴极室和中间室所具有的不同功能,比较分析了各个室去除污染物的基本原理和当前的研究进展,讨论了MFC应用于实际工程中存在的问题,展望并提出了未来MFC的发展目标及发展方向。  相似文献   

7.
研究了厌氧流化床微生物燃料电池(AFB-MFC)除碳脱氮产电性能的影响因素。结果表明:(1)AFB-MFC对NH4+-N的去除不起作用。电压下降主要是由于进水有机基质浓度下降造成。(2)不添加NO3--N时,在满足AFB-MFC脱氮所需的电子供体条件下增加进水COD/TN有利于AFB-MFC产电。(3)3种无机氮共存下,AFB-MFC在进水有机碳与无机氮质量比(C/N)不低于1.37时,对COD、NO2--N和NO3--N具有理想的去除效果。AFB-MFB在一定进水C/N范围内(1.37~2.50),能得到稳定的输出电压及功率密度。(4)固定进水C/N时,AFB-MFC在高碳氮负荷下仍能得到较理想的NO2--N、NO3--N、COD去除效果,AFB-MFC对NH4+-N去除效果不明显;增加碳氮负荷,AFB-MFC输出电压及功率密度没有明显的改变。(5)有机基质浓度不变下,AFB-MFC中充足的电子供体可保证较高的NO3--N、COD去除率。AFB-MFC输出电压及功率密度随着时间延长而先增加至稳定值后下降。  相似文献   

8.
温度、pH对微生物燃料电池产电的影响研究   总被引:1,自引:0,他引:1  
采用SPSS分析软件,考察了双室微生物燃料电池(MFC)、单室MFC运行过程中,温度、pH与产电性能的相关关系。结果表明,碳纸双室MFC的日均电压与温度、阳极pH均未呈现显著相关关系,而与阴极pH呈极显著相关关系,产电的决定性因素为阴极反应;石墨毡/碳纸双室MFC日均电压与温度未呈现显著相关关系,而与阳极pH、阴极pH均呈极显著相关关系,产电的决定性因素为pH;单室MFC的产电性能受温度的影响较大,而pH对其影响不显著,对于单室MFC的运行调控应主要从温度入手。  相似文献   

9.
尹航  胡翔 《环境工程学报》2013,7(2):608-612
微生物燃料电池在处理废水的同时可以产生电能,有希望同时解决废水再利用和能量再产生的问题。采用单室无膜空气阴极微生物燃料电池,处理模拟生活污水,探讨MFC处理模拟废水的效果。研究了以碳布(MFC1)、碳布负载碳纳米管(MFC2)、碳纳米管(MFC3)和泡沫镍(MFC4)作为4种不同的阳极材料,对MFC系统的启动、内阻和产电特性进行比较。结果表明,4种不同阳极MFC在水力停留时间24 h的条件下,对COD有很好的去除作用,其中MFC2的COD去除效率最大,为91.4%。在不影响MFC系统处理废水效果的前提下,实验得到4种阳极MFC系统中MFC2具有最小的内阻,为173.7Ω;并且其功率密度也大于其他3种MFC,达到401.2 mW/m2。  相似文献   

10.
为了提高污泥产电的效率,研究了以城市污水处理厂剩余污泥为基质的双室微生物燃料电池产电的4个影响因素:电极面积、电极间距、污泥浓度和污泥起始pH。研究结果表明,小电极面积电池的输出电压比大电极面积电池低,而电池的输出功率则正好相反;电极间距较小时(4.5 cm),电池的输出电压比电极间距较大(7.75 cm和13 cm)时高;实验的3个污泥浓度中,13.0 g/L为最佳污泥浓度,污泥浓度的升高或降低均会降低利用污泥产电的输出电压和单位污泥的产电功率,不利于污泥产电;当阳极室污泥的起始pH处于碱性时,电池的输出电压更高,污泥产电更好,其中pH为10.0时最好。极化曲线分析表明,这4个因素均会影响以污泥为基质的双室微生物燃料电池的性能。  相似文献   

11.
在微生物燃料电池(MFC)中,与微生物接触的阳极自身电场环境就可能会对产电菌的生长和代谢产生重要影响,进而影响到MFC产电效能.为探索阳极电势的作用,本研究在微生物燃料电池的阳极室中通过设置附加电路来人为改变阳极电势,考察了阳极电势对MFC产电的影响.结果表明,当阳极电势在-380 mV降低到0 mV过程中,MFC输出功率提高.当阳极电势小于200 mV时,COD去除效率在60%~73%之间变化不大.较低或较高的阳极电势均可增加电池的库伦效率.阳极电势处于-380 mV到0 mV下,厌氧微生物主要以丙酸型发酵为主,产生大量乙酸;COD的分解和利用是分阶段进行的.不同阳极电势下MFC内阻变化主要受浓差内阻影响.阳极电势为-200 mV时欧姆内阻最低,但电化学活性较高.  相似文献   

12.
研究以碳纤维毡为阳极,采用不同的表面改性方式对微生物燃料电池(MFC)产电效率的影响,并通过塔菲尔曲线(Tafel)和慢速扫描循环伏安法(SSCV)研究了碳纤维毡表面经不同改性处理后作为阳极的电化学行为。结果表明.碳纤维毡经丙酮浸泡(CZ—C)和热处理(CZ-H)后,最大输出功率从763mW/m2上升到896mW/m2,提高了17%;电化学测试证实碳纤维毡热处理后阳极交换电流密度提高,且氧化峰电位正移、峰电流增大。  相似文献   

13.
对ABR反应器的水力流态进行了示踪剂试验,分析了特征截面面积对ABR水力特性的影响,采用停留时间分布(RTD)法研究了不同进水COD浓度和HRT条件下ABR反应器的水力特性,结果表明不同进水COD浓度时ABR反应器的RTD曲线相似,表明进水COD浓度不是影响ABR水力特性的主要因素;不同HRT条件下RTD曲线差异很大,表明HRT对ABR的水力特性影响较大,随着水力停留时间的延长,N值增大,1/Pe减小,ABR的流态趋于推流流态,随着HRT的缩短,N值减小,1/Pe数增大,ABR反应器趋于完全混合流态.  相似文献   

14.
为解决传统MFC反硝化菌在好氧阴极难以富集且脱氮效果差的问题,通过构建石墨MFC和碳刷MFC以阴极硝化耦合阳极反硝化的方式脱氮除碳,并对比分析2种不同电极MFC的性能。结果表明:在相同条件下石墨MFC的最大功率密度为6.71 W·m-3 NC,开路电压为902.13 mV;碳刷MFC的最大功率密度为5.11 W·m-3 NC,开路电压819.04 mV。启动阶段前15 d碳刷MFC的总氮去除率更高,之后石墨MFC的总氮去除率接近100%,碳刷MFC的总氮去除率在95%左右。石墨MFC的COD去除率高达93%,碳刷MFC的COD去除率在83%左右。相比于传统MFC,阴极硝化耦合阳极反硝化MFC不需要调节pH。相比于碳刷电极,石墨电极MFC可以启动和挂膜同时进行,缩短挂膜时间,且产电性能和脱氮除碳效果更好。  相似文献   

15.
微生物燃料电池近年来被证实可以用来同步脱氮,然而微生物燃料电池中阴阳极室通常以不同成分的污水作为底物。为了实现废水脱氮,往往需要进行出水调配或停曝等复杂的操作。为解决上述问题,本研究构建了阴极硝化耦合阳极反硝化的四室微生物燃料电池(four chamber microbial fuel cell,FC-MFC),阳极室与阴极室之间用阳离子交换膜(cation exchange membrane,CEM)与阴离子交换膜(anion exchange membrane,AEM)进行交替分隔。在浓度差作用下离子进行定向迁移,最终实现阳极室有机物和氨氮的同步去除。探讨了阳极COD(即进水碳氮比)对FC-MFC产电及污染物去除效果的影响,并分析FC-MFC的氮去除途径。结果表明:随着阳极室COD的增加,各MFC模块的产电周期、峰值输出电压和最大功率密度随之增加,同时阳极室COD和TN的去除率也呈上升趋势,该系统对高碳氮比污水具有良好的抵抗负荷。当进水COD和NH4+-N质量浓度分别为1 100 mg·L−1和100 mg·L−1时,4个MFC模块的峰值输出电压介于526~619 mV,最大功率密度为103.47~121.00 mW·m−2,阳极室COD去除率和TN去除率分别高达94%和96%以上。氮去除途径分析结果表明,阳极室微生物吸附代谢作用、阴极室内源反硝化、阴极室通过AEM迁移至后序位阳极室进行反硝化过程分别贡献了25.96%~25.97%、0.91%~5.18%、68.87%~73.20%。  相似文献   

16.
构建一种微生物燃料电池(MFC),首先将对氯酚在阴极室降解为苯酚,随后将阴极处理液在阳极室降解。研究了对氯酚废水经过阴阳双室分步处理后的去除效果和该MFC的产电性能,结果表明,在外电阻1 000 Ω时,阴极脱氯阶段最大输出电压为216 mV,产电周期为132 h;阳极降解阶段最大输出电压为277 mV,产电周期为48 h,对氯酚的总去除率为96.2%。实验结果表明该MFC能较好处理对氯酚废水,且与传统的生化处理技术相比,有较大的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号