首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As the primary interface with the human body during rear impact, the automotive seat holds great promise for mitigation of Whiplash Associated Disorders (WAD). Recent research has chronicled the potential influence of both seat geometrical and constitutive properties on occupant dynamics and injury potential. Geometrical elements such as reduced head to head restraint, rearward offset, and increased head restraint height have shown strong correlation with reductions in occupant kinematics. The stiffness and energy absorption of both the seating foam and the seat infrastructure are also influential on occupant motion; however, the trends in injury mitigation are not as clear as for the geometrical properties. It is of interest to determine whether, for a given seat frame and infrastructure, the properties of the seating foam alone can be tailored to mitigate WAD potential. Rear impact testing was conducted using three model year 2000 automotive seats (Chevrolet Camaro, Chevrolet S-10 pickup, and Pontiac Grand Prix), using the BioRID P3 anthropometric rear impact dummy. Each seat was distinct in construction and geometry. Each seat back was tested with various foams (i.e., standard, viscoelastic, low or high density). Seat geometries and infrastructures were constant so that the influence of the seating foams on occupant dynamics could be isolated. Three tests were conducted on each foam combination for a given seat (total of 102 tests), with a nominal impact severity of Delta V = 11 km/h (nominal duration of 100 msec). The seats were compared across a host of occupant kinematic variables most likely to be associated with WAD causation. No significant differences (p < 0.05) were found between seat back foams for tests within any given seat. However, seat comparisons yielded several significant differences (p < 0.05). The Camaro seat was found to result in several significantly different occupant kinematic variables when compared to the other seats. No significant differences were found between the Grand Prix and S-10 seats. Seat geometrical characteristics obtained from the Head Restraint Measuring Device (HRMD) showed good correlation with several occupant variables. It appears that for these seats and foams the head-to-head restraint horizontal and vertical distances are overwhelmingly more influential on occupant kinematics and WAD potential than the local foam properties within a given seat.  相似文献   

2.
As the primary interface with the human body during rear impact, the automotive seat holds great promise for mitigation of Whiplash Associated Disorders (WAD). Recent research has chronicled the potential influence of both seat geometrical and constitutive properties on occupant dynamics and injury potential. Geometrical elements such as reduced head to head restraint, rearward offset, and increased head restraint height have shown strong correlation with reductions in occupant kinematics. The stiffness and energy absorption of both the seating foam and the seat infrastructure are also influential on occupant motion; however, the trends in injury mitigation are not as clear as for the geometrical properties. It is of interest to determine whether, for a given seat frame and infrastructure, the properties of the seating foam alone can be tailored to mitigate WAD potential. Rear impact testing was conducted using three model year 2000 automotive seats (Chevrolet Camaro, Chevrolet S-10 pickup, and Pontiac Grand Prix), using the BioRID P3 anthropometric rear impact dummy. Each seat was distinct in construction and geometry. Each seat back was tested with various foams (i.e., standard, viscoelastic, low or high density). Seat geometries and infrastructures were constant so that the influence of the seating foams on occupant dynamics could be isolated. Three tests were conducted on each foam combination for a given seat (total of 102 tests), with a nominal impact severity of Delta V = 11 km/h (nominal duration of 100 msec). The seats were compared across a host of occupant kinematic variables most likely to be associated with WAD causation. No significant differences (p < 0.05) were found between seat back foams for tests within any given seat. However, seat comparisons yielded several significant differences (p < 0.05). The Camaro seat was found to result in several significantly different occupant kinematic variables when compared to the other seats. No significant differences were found between the Grand Prix and S-10 seats. Seat geometrical characteristics obtained from the Head Restraint Measuring Device (HRMD) showed good correlation with several occupant variables. It appears that for these seats and foams the head-to-head restraint horizontal and vertical distances are overwhelmingly more influential on occupant kinematics and WAD potential than the local foam properties within a given seat.  相似文献   

3.
OBJECTIVES: The horizontal distance between the back of the head and the frontal of the head restraint (backset) and rearward head movement relative to the torso (cervical retraction) were studied in different occupant postures and positions in a modern car. METHODS: A stratified randomized population of 154 test subjects was studied in a Volvo V70 year model 2003 car, in driver, front passenger, and rear passenger position. In each position, the subjects adopted (i) a self-selected posture, (ii) a sagging posture, and (iii) an erect posture. Cervical retraction, backset, and vertical distance from the top of the head restraint to the occipital protuberance in the back of the head of the test subject were measured. These data were analyzed using repeated measures ANOVA and linear regression analysis with a significance level set to p < 0.05. RESULTS: In the self-selected posture, the average backset was 61 mm for drivers, 29 mm for front passengers, and 103 mm for rear passengers (p < 0.001). Women had lower mean backset (40 mm) than men (81 mm), particularly in the self-selected driving position. Backset was larger and cervical retraction capacity lower in the sagging posture than in the self-selected posture for occupants in all three occupant positions. Rear passengers had the largest backset values. Backset values decreased with increased age. The average cervical retraction capacity in self-selected posture was 35 mm for drivers, 30 mm for front passengers, and 33 mm for rear passengers (p < 0.001). CONCLUSIONS: Future design of rear-end impact protection may take these study results into account when trying to reduce backset before impact. Our results might be used for future development and use of BioRID manikins and rear-end tests in consumer rating test programs such as Euro-NCAP.  相似文献   

4.
OBJECTIVE: The objective of this study was to quantify the occupant response variability due to differences in vehicle and seat design in low-speed rear-end collisions. METHODS: Occupant response variability was quantified using a BioRID dummy exposed to rear-end collisions in 20 different vehicles. Vehicles were rolled rearward into a rigid barrier at 8 km/h and the dynamic responses of the vehicle and dummy were measured with the head restraint adjusted to the up most position. In vehicles not damaged by this collision, additional tests were conducted with the head restraint down and at different impact speeds. RESULTS: Despite a coefficient of variation (COV) of less than 2% for the impact speed of the initial 8 km/h tests, the vehicle response parameters (speed change, acceleration, restitution, bumper force) had COVs of 7 to 23% and the dummy response parameters (head and T1 kinematics, neck loads, NIC, N(ij) and N(km)) had COVs of 14 to 52%. In five vehicles tested multiple times, a head restraint in the down position significantly increased the peak magnitude of many dummy kinematic and kinetic response parameters. Peak head kinematics and neck kinetics generally varied linearly with head restraint back set and height, although the neck reaction moment reversed and increased considerably if the dummy's head wrapped onto the top of the head restraint. CONCLUSIONS: The results of this study support the proposition that the vehicle, seat, and head restraint are a safety system and that the design of vehicle bumpers and seats/head restraint should be considered together to maximize the potential reduction in whiplash injuries.  相似文献   

5.
Whiplash has increased over the past two decades. This study compares occupant dynamics with three different seat types (two yielding and one stiff) in rear crashes. Responses up to head restraint contact are used to describe possible reasons for the increase in whiplash as seat stiffness increased in the 1980s and 1990s. Three exemplar seats were defined by seat stiffness (k) and frame rotation stiffness (j) under occupant load. The stiff seat had k=40 kN/m and j=1.8 degrees /kN representing a foreign benchmark. One yielding seat had k=20 kN/m and j=1.4 degrees /kN simulating a high-retention seat. The other had k=20 kN/m and j=3.4 degrees /kN simulating a typical yielding seat of the 1980s and 1990s. Constant vehicle acceleration for 100 ms gave delta-V of 6, 10, 16, 24, and 35 km/h. The one-dimensional model included a torso mass loading the seatback, head motion through a flexible neck, and head restraint drop and rearward displacement with seatback rotation. Neck displacement was greatest with the stiff seat due to higher loads on the torso. It peaked at 10 km/h rear delta-V and was lower in higher-severity crashes. It averaged 32% more than neck displacements with the 1980s yielding seat. The high-retention seat had 67% lower neck displacements than the stiff seat because of yielding into the seatback, earlier head restraint contact and less seatback rotation, which involved 16 mm drop in head restraint height due to seatback rotation in the 16 km/h rear delta-V. This was significantly lower than 47 mm with the foreign benchmark and 73 mm with the 1980s yielding seat. Early in the crash, neck responses are proportional to ky/mT, seat stiffness times vehicle displacement divided by torso mass, so neck responses increase with seat stiffness. The trend toward stiffer seats increased neck responses over the yielding seats of the 1980s and 1990s, which offers one explanation for the increase in whiplash over the past two decades. This is a result of not enough seat suspension compliance as stronger seat frames were introduced. As seat stiffness has increased, so have neck displacements and the Neck Injury Criterion (NIC). High-retention seats reduce neck biomechanical responses by allowing the occupant to displace into the seatback at relatively low torso loads until head restraint contact and then transferring crash energy. High-retention seats resolve the historic debate between stiff (rigid) and yielding seats by providing both a strong frame (low j) for occupant retention and yielding suspension (low k) to reduce whiplash.  相似文献   

6.
Rear impact sled tests were conducted using 5th, 50th, and 95th percentile Hybrid III dummies to evaluate proposed injury criteria. Different head restraint height (750, 800 mm) and backset (0, 50, 100 mm) positions were used to determine axial and shear forces, bending moments, and injury criteria (NIC, N(ij), and N(km)). The time sequence to attain each parameter was also determined. Three events were identified in the response. Event I was coincident with the maximum rearward motion of the torso, Event II occurred at the time of the peak upper neck flexion moment, and Event III occurred at the time of maximum rearward motion of the head. Parameters such as backset, head restraint height, seat-head restraint interaction, and anthropometry affected impact responses. Head rotations increased with increasing backset and increasing head restraint height. However, N(ij) and N(km) did not exhibit such clear trends. The 50th percentile dummy responded with consistent injury criteria values (e.g., the magnitude of the injury criteria increased with backset increase or head restraint height decrease). However, the 5th and 95th percentile dummies did not demonstrate such trends. These findings underscore the need to include subject anthropometry in addition to seat and head restraint characteristics for better assessment of rear impact responses.  相似文献   

7.
OBJECTIVE: This study aims to determine the potential for improved child occupant protection in side impacts that can be obtained using rigid and semi-rigid anchorage systems and the addition of energy-absorbing padding in the side structures of child restraints. METHODS: This study uses a comprehensive set of simulated side impacts to evaluate the potential for improved side impact protection in forward-facing child restraints. Factors investigated included methods of anchoring the restraint to the vehicle, energy-absorbing materials in the side structure of restraints, and design features of the restraints such as side wing geometry and seat belt routing. RESULTS: The results show clearly that completely rigid lower attachment of restraints offers the potential for great reductions in head injury risk, which anchorage systems employing a combination of a rigid anchorage bar and webbing attached to a child restraint cannot match. The addition of energy absorbing material in the side structure of restraint systems is effective when the head is fully contained within an adequately designed side wing structure. For restraints anchored by seat belts and loop style semi rigid anchorage straps, belt routing has the potential to significantly affect occupant head excursion. CONCLUSIONS: The results suggest that current child restraint standards and consumer testing protocols do not adequately encourage best practice design of child restraints for side impact protection.  相似文献   

8.
Objective: Whiplash-associated disorder (WAD), commonly denoted whiplash injury, is a worldwide problem. These injuries occur at relatively low changes of velocity (typically <25 km/h) in impacts from all directions. Rear impacts, however, are the most common in the injury statistics. Females have a 1.5–3 times higher risk of whiplash injury than males.

?Improved seat design is the prevailing means of increasing the protection of whiplash injury for occupants in rear impacts. Since 1997, more advanced whiplash protection systems have been introduced on the market, the Saab Active Head Restraint (SAHR) being one of the most prominent. The SAHR—which is height adjustable—is mounted to a pressure plate in the seatback by means of a spring-resisted link mechanism.

?Nevertheless, studies have shown that seats equipped with reactive head restraints (such as the SAHR) have a very high injury-reducing effect for males (~60–70%) but very low or no reduction effect for females. One influencing factor could be the position of the head restraint relative to the head, because a number of studies have reported that adjustable head restraints often are incorrectly positioned by drivers.

?The aim was to investigate how female and male Saab drivers adjust the seat in the car they drive the most.

Methods: The seated positions of drivers in stationary conditions have been investigated in a total of 76 volunteers (34 females, 42 males) who participated in the study. Inclusion criteria incorporated driving a Saab 9–3 on a regularly basis.

Results: The majority of the volunteers (89%) adjusted the head restraint to any of the 3 uppermost positions and as many as 59% in the top position.

?The average vertical distance between the top of the head and the top of the head restraint (offset) increase linearly with increasing statures, from an average of ?26 mm (head below the head restraint) for small females to an average of 82 mm (head above the head restraint) for large males. On average, the offset was 23 mm for females, which is within a satisfactory range and in accordance with recommendations; the corresponding value for males was 72 mm.

?The backset tended to be shorter among female volunteers (on average 27 mm) compared to the male volunteers (on average 44 mm). Moreover, the backset tended to increase with increasing statures.

Conclusions: Incorrect adjustment of the head restraint cannot explain the large differences found between the sexes in the effectiveness of the SAHR system.  相似文献   

9.
Seat performance in retaining an occupant, transferring energy, and controlling neck responses is often questioned after severe rear crashes when fatal or disabling injury occur. It is argued that a stiffer seat would have improved occupant kinematics. However, there are many factors in occupant interactions with the seat. This study evaluates four different seat types in 26 and 32 mph (42 and 51 km/h), rear crash delta Vs. Two seats were yielding with k = 20 kN/m occupant load per displacement. One represented a 1970s yielding seat with j = 3.4 degrees /kN frame rotation per occupant load, and 3 kN maximum load (660 Nm moment), and the other a high retention seat phased into production since 1997 with j = 1.4 degrees /kN, and 10 kN maximum load (2200 Nm). Two seats were stiff with k = 40 kN/m. One represented a 1990s foreign benchmark with j = 1.8 degrees /kN and a 7.7 kN maximum load (1700 Nm), and the other an all belts to seat (ABTS) with j = 1.0 degrees /kN and 20 kN maximum load (4400 Nm). The crash was a constant acceleration of 11.8 g, or 14.5 g for 100 ms. Occupant interactions with the seat were modeled using a torso mass, flexible neck and head mass. By analysis of the equations of motion, the initial change in seatback angle (Deltatheta) is proportional to jk(y - x), the product jk and the differential motion between the vehicle (seat cushion) and occupant. The transition from 1970s-80s yielding seats to stronger seats of the 1990s involved an increase in k stiffness; however, the jk property did not change as frame structures became stronger. The yielding seats of the 1970s had jk = 68 degrees /m, while the stiff foreign benchmark seat had jk = 72 degrees /m. The foreign benchmark rotated about the same as the 1970s seat up to 50 ms in the severe rear crashes. While it was substantially stronger, it produced higher loads on the occupant, and the higher loads increased seatback rotations and neck responses. The ABTS seat had the lowest rotations but also caused high neck responses because of the greater loads on the torso. Neck displacement (d) is initially proportional to (k/m(T)) integral integral y, seat stiffness times the second integral of vehicle displacement divided by torso mass. As seat stiffness increases, head-torso acceleration, velocity, and neck displacement increase. This study shows that the jk seat property determines the initial seatback rotation in rear crashes. If a stronger seat has a higher stiffness, it rotates at higher loads on the occupant, reducing the overall benefit of the stronger frame, while increasing neck responses related to whiplash or neck extension prior to subsequent impacts. The aim of seat designs should be to reduce jk, provide pocketing of the pelvis, and give head-neck support for the best protection in severe rear crashes. For low-speed crashes, a low k is important to reduce early neck responses related to whiplash.  相似文献   

10.
Seat performance in retaining an occupant, transferring energy, and controlling neck responses is often questioned after severe rear crashes when fatal or disabling injury occur. It is argued that a stiffer seat would have improved occupant kinematics. However, there are many factors in occupant interactions with the seat. This study evaluates four different seat types in 26 and 32 mph (42 and 51 km/h), rear crash delta Vs. Two seats were yielding with k = 20 kN/m occupant load per displacement. One represented a 1970s yielding seat with j = 3.4°/kN frame rotation per occupant load, and 3 kN maximum load (660 Nm moment), and the other a high retention seat phased into production since 1997 with j = 1.4°/kN, and 10 kN maximum load (2200 Nm). Two seats were stiff with k = 40 kN/m. One represented a 1990s foreign benchmark with j = 1.8°/kN and a 7.7 kN maximum load (1700 Nm), and the other an all belts to seat (ABTS) with j = 1.0°/kN and 20 kN maximum load (4400 Nm). The crash was a constant acceleration of 11.8 g, or 14.5 g for 100 ms. Occupant interactions with the seat were modeled using a torso mass, flexible neck and head mass. By analysis of the equations of motion, the initial change in seatback angle (Δθ) is proportional to jk(y ? x), the product jk and the differential motion between the vehicle (seat cushion) and occupant. The transition from 1970s–80s yielding seats to stronger seats of the 1990s involved an increase in k stiffness; however, the jk property did not change as frame structures became stronger. The yielding seats of the 1970s had jk = 68°/m, while the stiff foreign benchmark seat had jk = 72°/m. The foreign benchmark rotated about the same as the 1970s seat up to 50 ms in the severe rear crashes. While it was substantially stronger, it produced higher loads on the occupant, and the higher loads increased seatback rotations and neck responses. The ABTS seat had the lowest rotations but also caused high neck responses because of the greater loads on the torso. Neck displacement (d) is initially proportional to (k/mT) ∫∫ y, seat stiffness times the second integral of vehicle displacement divided by torso mass. As seat stiffness increases, head-torso acceleration, velocity, and neck displacement increase. This study shows that the jk seat property determines the initial seatback rotation in rear crashes. If a stronger seat has a higher stiffness, it rotates at higher loads on the occupant, reducing the overall benefit of the stronger frame, while increasing neck responses related to whiplash or neck extension prior to subsequent impacts. The aim of seat designs should be to reduce jk, provide pocketing of the pelvis, and give head-neck support for the best protection in severe rear crashes. For low-speed crashes, a low k is important to reduce early neck responses related to whiplash.  相似文献   

11.
Objective: This study investigated overall performance of an energy-absorbing sliding seat concept for whiplash neck injury prevention. The sliding seat allows its seat pan to slide backward for some distance under certain restraint force to absorb crash energy in rear impacts.

Methods: A numerical model that consisted of vehicle interior, seat, seat belt, and BioRID II dummy was built in MADYMO to evaluate whiplash neck injury in rear impact. A parametric study of the effects of sliding seat parameters, including position and cushion stiffness of head restraint, seatback cushion stiffness, recliner characteristics, and especially sliding energy-absorbing (EA) restraint force, on neck injury criteria was conducted in order to compare the effectiveness of the sliding seat concept with that of other existing anti-whiplash mechanisms. Optimal sliding seat design configurations in rear crashes of different severities were obtained. A sliding seat prototype with bending of a steel strip as an EA mechanism was fabricated and tested in a sled test environment to validate the concept. The performance of the sliding seat under frontal and rollover impacts was checked to make sure the sliding mechanism did not result in any negative effects.

Results: The protective effect of the sliding seat with EA restraint force is comparable to that of head restraint–based and recliner stiffness–based anti-whiplash mechanisms. EA restraint force levels of 3 kN in rear impacts of low and medium severities and 6 kN in impacts of high severity were obtained from optimization. In frontal collision and rollover, compared to the nonsliding seat, the sliding seat does not result in any negative effects on occupant protection. The sled test results of the sliding seat prototype have shown the effectiveness of the concept for reducing neck injury risks.

Conclusion: As a countermeasure, the sliding seat with appropriate restraint forces can significantly reduce whiplash neck injury risk in rear impacts of low, medium, and high severities with no negative effects on other crash load cases.  相似文献   


12.
Since the earliest crash investigations, whiplash has been found to occur more often in women than men. This study addresses seat properties that may explain a reason for the higher rates in women, and changes in whiplash in general over the past two decades. Three exemplar seats were defined on the basis of seat stiffness (k) and frame rotation stiffness (j) for rearward occupant load. Stiff seats have k=40 kN/m and j=1.8 degrees /kN representing a foreign benchmark loaded by a male. One yielding seat had k=20 kN/m and j=1.4 degrees /kN simulating a high-retention seat (1997 Grand Prix) and another k=20 kN/m and j=3.4 degrees /kN simulating a 1980s to 1990s yielding seat (1990 Buick Park Avenue). Constant vehicle acceleration for 100 msec gave delta-V of 6, 10, 16, and 24 km/h. The one-dimensional model included a torso mass loading the seatback with flexible neck and head mass. Based on biomechanical data and scaling, neck stiffness was 5 kN/m and 3 kN/m for the male and female, respectively. Based on validation tests, seat stiffness was 25% less with the female. Occupant dynamics were simulated in a step-forward solution based on the differential displacement between the head, torso, and seat up to head restraint contact. Neck responses were 30% higher in the female than male through most of the rear impact and are proportional to (kF/mTF)/(kM/mTM), which is the ratio of seat stiffness divided by torso mass for the female and male. Neck displacements were higher with the stiff seat than the 1990 C car seat for both the female and male. They peaked at 10 km/h and dropped off for higher severity crashes due to the shorter time to head contact. Neck displacements were greater in the female than male for the lowest severity crashes with the stiff and 1990 C car seats, when displacement was scaled for equal tolerance. The female in 1997 W car seat had the lowest neck displacements. Stiff seats increased neck displacements over the yielding seats of the 1980s in rear crashes. The trend is similar in men and women, but early neck displacements are greater in women because of a higher ratio of seat stiffness to torso mass. This implies that seat stiffness is not sufficiently low in proportion to the female mass in comparison to males. The j and k seat properties influence neck biomechanics and occupant dynamics, but k is important in determining early response differences between males and females.  相似文献   

13.
为探究约束系统在全承载客车正面碰撞事故中对乘客损伤的影响,利用有限元分析软件LSDYNA建立某大客车正面碰撞仿真模型,并开展整车50 km/h正面100%重叠碰撞固定刚性壁障试验;从车身变形、加速度曲线和乘员损伤等3方面验证仿真模型;基于已验证的仿真模型,开展不同座椅间距、车厢位置及安全带类型的乘员运动响应和损伤等综合分析与评价。研究结果表明:不同位置车身加速度波形整体趋势相似,但具体峰值和出现时刻存在差异;增大座椅间距和主动预紧安全带能够有效降低降低头部损伤值,而颈部损伤则随之增大;乘客胸部损伤值和大腿力受主动预紧安全带、座椅间距和车厢位置影响不大。  相似文献   

14.
Objective: To evaluate the influence of forward-facing child restraint systems’ (FFCRSs) side impact structure, such as side wings, on the head kinematics and response of a restrained, far- or center-seated 3-year-old anthropomorphic test device (ATD) in oblique sled tests.

Methods: Sled tests were conducted utilizing an FFCRS with large side wings and with the side wings removed. The CRS were attached via LATCH on 2 different vehicle seat fixtures—a small SUV rear bench seat and minivan rear bucket seat—secured to the sled carriage at 20° from lateral. Four tests were conducted on each vehicle seat fixture, 2 for each FFCRS configuration. A Q3s dummy was positioned in FFCRS according to the CRS owner's manual and FMVSS 213 procedures. The tests were conducted using the proposed FMVSS 213 side impact pulse. Three-dimensional motion cameras collected head excursion data. Relevant data collected during testing included the ATD head excursions, head accelerations, LATCH belt loads, and neck loads.

Results: Results indicate that side wings have little influence on head excursions and ATD response. The median lateral head excursion was 435 mm with side wings and 443 mm without side wings. The primary differences in head response were observed between the 2 vehicle seat fixtures due to the vehicle seat head restraint design. The bench seat integrated head restraint forced a tether routing path over the head restraint. Due to the lateral crash forces, the tether moved laterally off the head restraint reducing tension and increasing head excursion (477 mm median). In contrast, when the tether was routed through the bucket seat's adjustable head restraint, it maintained a tight attachment and helped control head excursion (393 mm median).

Conclusion: This testing illustrated relevant side impact crash circumstances where side wings do not provide the desired head containment for a 3-year-old ATD seated far-side or center in FFCRS. The head appears to roll out of the FFCRS even in the presence of side wings, which may expose the occupant to potential head impact injuries. We postulate that in a center or far-side seating configuration, the absence of door structure immediately adjacent to the CRS facilitates the rotation and tipping of the FFCRS toward the impact side and the roll-out of the head around the side wing structure. Results suggest that other prevention measures, in the form of alternative side impact structure design, FFCRS vehicle attachment, or shared protection between the FFCRS and the vehicle, may be necessary to protect children in oblique side impact crashes.  相似文献   

15.
INTRODUCTION: This study investigated the survival rates of occupants of passenger cars involved in a fatal crash between 2000 and 2003. METHODS: The information from every fatal crash in the United States between 2000 and 2003 was analyzed. Variables such as seat position, point of impact, rollover, restraint use, vehicle type, vehicle weight, occupant age, and injury severity were extracted from the Fatality Analysis Reporting System (FARS). Univariate and a full logistic multivariate model analyses were performed. RESULTS: The data show that the rear middle seat is safer than any other occupant position when involved in a fatal crash. Overall, the rear (2(nd) row) seating positions have a 29.1% (Univariate Analysis, p<.0001, OR 1.29, 95% CI 1.22 - 1.37) increased odds of survival over the first row seating positions and the rear middle seat has a 25% (Univariate Analysis, p<.0001, OR 1.25, 95% CI 1.17 - 1.34) increased odds of survival over the other rear seat positions. After correcting for potential confounders, occupants of the rear middle seat have a 13% (Logistic Regression, p<.001, 95% CI 1.02 - 1.26) increased chance of survival when involved in a crash with a fatality than occupants in other rear seats. CONCLUSION: This study has shown that the safest position for any occupant involved in a motor-vehicle crash is the rear middle seat. IMPACT ON INDUSTRY: The results of this research may impact how automobile manufacturers look at future rear middle seat designs. If the rear seat was to be designed exactly like its outboard counterparts (headrest, armrests, lap and shoulder belt, etc.) people may choose to sit on it more often rather than waiting to use it out of necessity due to multiple rear seat occupants.  相似文献   

16.
Objective: Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety—including differences in compartment geometry and occupant clothing and gear—that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes.

Methods: In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test.

Results: Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear.

Conclusions: ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.  相似文献   


17.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

18.
Objective: In minicars, the survival space between the side structure and occupant is smaller than in conventional cars. This is an issue in side collisions. Therefore, in this article a solution is studied in which a lateral seat movement is imposed in the precrash phase. It generates a pre-acceleration and an initial velocity of the occupant, thus reducing the loads due to the side impact.

Methods: The assessment of the potential is done by numerical simulations and a full-vehicle crash test. The optimal parameters of the restraint system including the precrash movement, time-to-fire of head and side airbag, etc., are found using metamodel-based optimization methods by minimizing occupant loads according to European New Car Assessment Programme (Euro NCAP).

Results: The metamodel-based optimization approach is able to tune the restraint system parameters. The numerical simulations show a significant averaged reduction of 22.3% in occupant loads.

Conclusion: The results show that the lateral precrash occupant movement offers better occupant protection in side collisions.  相似文献   

19.
Objective: A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases.

Method: Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury.

Results: Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured.

Conclusions: A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.  相似文献   

20.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号