首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fe(II)/γ-Al2O3 powders synthesized using the dipping method were produced from a mixed aqueous solution containing aluminium oxide(γ-Al2O3) and iron(II)-precursor(FeSO4), and used for photoFenton degradation of phthalocyanine dyes(PCS) under ultraviolet(UV) irradiation in an up-flow fluidized bed. The catalysts were characterized by XRD, ESCA, BET, EDS and SEM. The results showed that Fe2+ion was compounded on the γ-Al2O3 carrier. The effects of different reaction parameters such as catalyst activity, dosage and solution pH on the decolorization of PCS were assessed. Results indicated that maximum decolorization(more than 95%) of PCS occurred with20 wt% Fe(II)/γ-Al2O3 catalyst(dosage of 60 g/L) using a combination of UV irradiation and heterogeneous Fenton system. The degradation efficiency of PCSincreases as pH decreases, exhibiting a maximum efficiency at pH 3.5. The recycled catalyst was capable of repeating three runs without a significant decrease in treatment efficiency, and this demonstrated the stability and reusability of catalyst.  相似文献   

2.
Photocatalytic ozonation of phenol and oxalic acid (OA) was conducted with a Ag^+/TiO2 catalyst and different pathways were found for the degradation of different compounds. Ag^+ greatly promoted the photocatalytic degradation of contaminants due to its role as an electron scavenger. It also accelerated the removal rate of OA in ozonation and the simultaneous process for its complex reaction with oxalate. Phenol could be degraded both in direct ozonation and photolysis, but the TOC removal rates were much higher in the simultaneous processes due to the oxidation of hydroxyl radicals resulting from synergetic effects. The sequence of photo-illumination and ozone exposure in the combined process showed quite different effects in phenol degradation and TOC removal. The synergetic effects in different combined processes were found to be highly related to the properties of the target pollutants. The color change of the solution and TEM result confirmed that Ag+ was easily reduced and deposited on the surface of Tit2 under photo-illumination, and dissolved again into solution in the presence of ozone. This simple cycle of enrichment and distribution of Ag^+ can greatly benefit the design of advanced oxidation processes, in which the sequences of ozone and photo-illumination can be varied according to the needs for catalyst recycling and the different properties of pollutants.  相似文献   

3.
Involvement of chloride anion in photocatalytic process   总被引:3,自引:3,他引:0  
The effect of Cl^- on photocatalytic degradation(PCD) of pollutants is an important factor since it is ubiquitous in nature. In general, Cl^- showed an inhibition on photodegradation due to its scavenging HO- radicals. In this paper, experiments were carried out to examine the effects of CI on the PCD of Methylene Blue (MB) and Orange II (OII) in aqueous TiO2 suspensions under UV light illumination. It was found that low concentration of Cl^- ( 〈 0.01 mol/L) showed little influence on both dyes, however, high concentration of Cl^- ( 〉 0.10 mol/L) had a very different influence on the decolorization of dyes: a significant inhibition for MB but a great promotion for Oll. In the presence of 0.50 mol/L Cl^- , the rate decreased by 70% for MB while increased 7.5-fold for Oll. Furthermore, two bands in the ultraviolet region of Oll were rapidly broken down. The proposed mechanism was discussed in detail.  相似文献   

4.
Fe3O4-CoO/Al2O3 catalyst was prepared by incipient wetness impregnation using Fe(NO3) 3·9H2O and Co(NO3) 2·6H2O as the precursors,and its catalytic performance was investigated in ozonation of 2-(2,4-dichlorophenoxy) propionic acid(2,4-DP) ,nitrobenzene and oxalic acid.The experimental results indicated that Fe3O4-CoO/Al2O3 catalyst enabled an interesting improvement of ozonation eciency during the degradation of each organic pollutant,and the Fe3O4-CoO/Al2O3 catalytic ozonation system followed a radical-type mechanism.The kinetics of ozonation alone and Fe3O4-CoO/Al2O3 catalytic ozonation of three organic pollutants in aqueous solution were discussed under the mere consideration of direct ozone reaction and OH radical reaction to well investigate its performance.In the catalytic ozonation of 2,4-DP,the apparent reaction rate constants(k) were determined to be 1.456×10-2 min-1 for ozonation alone and 4.740×10-2 min-1 for O3/Fe3O4-CoO/Al2O3.And O3/Fe3O4-CoO/Al2O3 had a larger Rct(6.614×10-9) calculated by the relative method than O3 did(1.800×10-9) ,showing O3/Fe3O4-CoO/Al2O3 generated more hydroxyl radical.Similar results were also obtained in the catalytic ozonation of nitrobenzene and oxalic acid.The above results demonstrated that the catalytic performance of Fe3O4-CoO/Al2O3 in ozonation of studied organic substance was universal to a certain degree.  相似文献   

5.
Photocatalytic degradation of Bisphenol A (BPA), a representative endocrine disruptor chemical, was carried out under irradiation of sunlight in the presence of CexZn1-xO nanophotocatalyst. Cerium (Ce) ions were successfully incorporated into the bulk lattice of ZnO by simple co-precipitation process. The CexZn1-xO composite nanostructures exhibited higher photocatalytic efficiency than pure ZnO in the degradation of BPA under sunlight irradiation and nearly complete mineralization of BPA was achieved. The degradation rate was strongly dependent on factors such as the size and structure of catalyst, doping material concentration, BPA concentration, catalyst load, irradiation time and pH levels. This work suggested that the CexZn1-xO assisted photocatalytic degradation is a versatile, economic, environmentally benign and efficient method for BPA removal in the aqueous environment.  相似文献   

6.
The catalyst of CuOx/Al2O3 was prepared by the dipping-sedimentation method using γ-Al2O3 as a carrier. CuO and Cu2O were loaded on the surface of γ-Al2O3, characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). In the presence of CuOx/Al2O3, the microwave-induced chlorine dioxide (ClO2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing 100 mg/L phenol. The relationships between removal percentage and initial ClO2 concentration, catalyst dosage, microwave power, contact time, initial phenol concentration and pH were investigated and the results showed that microwave-induced ClO2-CuOx/Al2O3 process could effectively degrade contaminants in a short reaction time with a low oxidant dosage, extensive pH range. Under a given condition (ClO2 concentration 80 mg/L, microwave power 50 W, contact time 5 min, catalyst dosage 50 g/L, pH 9), phenol removal percentage approached 92.24%, corresponding to 79.13% of CODCr removal. The removal of phenol by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process was a complicated non-homogeneous solid/water reaction, which fitted pseudo-first-order by kinetics. Compared with traditional ClO2 oxidation, ClO2 catalytic oxidation and microwave-induced ClO2 oxidation, microwave-induced ClO2 catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for the removal of phenol wastewater.  相似文献   

7.
UV/H2O2 and UV/peroxodisulfate (PDS) processes were adopted to degrade a typical β-blocker atenolol (ATL). The degradation efficiencies under various operational parameters (oxidant dosage, pH, HCO3-, humic acid (HA), NO3- , and Cl-) were compared. Principal factor analysis was also performed with a statistical method for the two processes. It was found that increasing the specific dosage of the two peroxides ([peroxide]0/[ATL]0 ) ranging from 1:1 to 8:1 led to a faster degradation rate but also higher peroxide residual. Within the pH range 3-11, the optimum pH was 7 for the UV/PDS process and elevating pH benefitted the UV/H 2O2 process. The presence of HCO3- , HA, and Cl adversely affected ATL oxidation in both processes. The NO3- concentration 1-3 mmol/L accelerated the destruction of ATL by the UV/PDS process, but further increase of NO3- concentration retarded the degradation process, contrary to the case in the UV/H2O2 process. The rank orders of effects caused by the six operational parameters were pH ≈ specific dosage > [HA]0 > [NO3-]0 > [HCO3-]0 > [Cl-]0 for the UV/H2O2 process and specific dosage > pH > [HA]0 > [NO3-]0 > [HCO3-]0 >[Cl-]0 for the UV/PDS process. The UV/PDS process was more sensitive to changes in operational parameters than the UV/H2O2 process but more efficient in ATL removal under the same conditions.  相似文献   

8.
The nanometer and ordinary anatase titanium dioxide(TiO2 ) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO2 powder were much better than that without TiO2, but the sonocatalytic activity of the nanometer anatase TiO2 particle was obviously higher than that of ordinary anatase TiO2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO2 powder was an advisable choice for non-or lowtransparent organic wastewaters.  相似文献   

9.
The catalyst of CuO_x/Al_2O_3 was prepared by the dipping-sedimentation method usingγ-Al_2O_3 as a supporter.CuO and Cu_2O were loaded on the surface of Al_2O_3,characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).In the presence of CuO_x/Al_2O_3,the microwave-induced chlorine dioxide(ClO_2) catalytic oxidation process was conducted for the treatment of synthetic wastewater containing 100 mg/L phenol.The factors influencing phenol removal were investigated and the results showed that microwave-induced ClO_2-CuO_x/Al_2O_3 process could effectively degrade contaminants in a short reaction time with a low oxidant dosage,extensive pH range.Under a given condition(ClO_2 concentration 80 mg/L,microwave power 50 W,contact time 5 min,catalyst dosage 50 g/L,pH 9),phenol removal percentage approached 92.24%,corresponding to 79.13% of COD_(Cr) removal.The removal of phenol by microwave-induced ClO_2-CuO_x/Al_2O_3 catalytic oxidation process was a complicated non-homogeneous solid/water reaction, which fitted pseudo-first-order by kinetics.Compared with traditional ClO_2 oxidation,ClO_2 catalytic oxidation and microwave-induced ClO_2 oxidation,microwave-induced ClO_2 catalytic oxidation system could significantly enhance the degradation efficiency.It provides an effective technology for the removal of phenol wastewater.  相似文献   

10.
The photocatalytic degradation of Rhodamine B (RhB) was carried out using TiO2 supported on activated carbon (TiO2-AC) under microwave irradiation. Composite catalyst TiO2-AC was prepared and characterized using X-ray di raction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). In the process of microwave-enhanced photocatalysis (MPC), RhB (30 mg/L) was almost completely decoloured in 10 min, and the mineralization e ciency was 96.0% in 20 min. The reaction rate constant of RhB in MPC using TiO2-AC by pseudo first-order reaction kinetics was 4.16 times of that using Degussa P25. Additionally, according to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) identification, the major intermediates of RhB in MPC included two kinds of N-de-ethylation intermediates (N,N-diethyl-N’-ethyl-rhodamine (DER)), oxalic acid, malonic acid, succinic acid, and phthalic acid, maleic acid, 3-nitrobenzoic acid, and so on. The degradation of RhB in MPC was mainly attributed to the destruction of the conjugated structure, and then the intermediates transformed to acid molecules which were mineralized to water and carbon dioxide.  相似文献   

11.
介绍了当前国际化学危险品的各种分类体系,对比了GHS与TDG、EU_CLP、DOT、WHMIS等对化学危险品的具体分类。有助于GHS的理解与掌握,全面推进GHS在我国的实施。  相似文献   

12.
刘绮 《重庆环境科学》2000,22(5):21-23,27
以某区域水环境-经济系统为研究实例,寻求值-排污-水质综合协调解方法,寻求净收益最大时的总体规划方案。建立目标参数规划模型,寻求不同生产规模条件下的产值-排污-水质协调解,又探讨了水环境标准约束下的某化工区废水治理费用的计算方法,提出了以供决策者选择的方案。  相似文献   

13.
滇池富营养化特性评价   总被引:2,自引:0,他引:2  
刘雪亭 《云南环境科学》2005,24(Z1):134-135
介绍了滇池水质状况,对滇池富营养化特性进行了分析和评价,并提出了对策.  相似文献   

14.
土壤整体质量的生态毒性评价   总被引:10,自引:2,他引:8  
土壤样品采自沈阳西部污灌区 .进行了污染物 (重金属和矿物油 )含量分析和生态毒性试验 .重金属采用原子吸收分光光度仪测定 ,矿物油采用紫外分光光度计测定 .生态毒性试验分别参照国际标准组织 (ISO)和OECD指南 ,进行了植物毒性试验、蚯蚓毒性试验和蚕豆根尖微核试验 .植物试验以小麦种子发芽根伸长抑制率为试验终点 ,试验周期50h ,蚯蚓毒性试验以蚯蚓死亡率、体重增长抑制率为试验终点 ,试验周期28d .土壤中矿物油含量在145mg/kg~1121mg/kg ,重金属Cd为0.34mg/kg~1.81mg/kg .土壤对植物和蚯蚓显示不同程度的毒性效应 ,土壤的蚕豆根尖微核率明显高于对照 .种子发芽根伸长抑制率为2.0%至-35.1% ,蚯蚓死亡率为0%~40%.体重增长抑制率由14d的-2.3%~-19.4%在28d增加到-2.1%~10.7% ,蚕豆根尖微核率最高达6.62/100.研究表明 ,土壤中的污染物积累较低 ,但具有明显的生态毒性 .  相似文献   

15.
生态保护地协同管控成效评估   总被引:3,自引:2,他引:3  
分区分类管理是我国生态保护的重要管控制度,生态保护地是事关国家生态安全的关键区域,开展生态保护地保护成效评估及不同类型生态保护地之间的协同管控成效评估具有重要意义。以吉林省自然保护地和重点生态功能区等生态保护地(即禁止开发区和限制开发区)为研究对象,以重要生态空间、植被生态、水源涵养功能为主要内容,基于“禁止开发区—限制开发区—省域”的管控梯度差异,评估分析了生态保护地的协同管控成效。结果表明:(1)从重要生态空间协同管控成效来看,自然保护地的重要生态空间面积比例最高、人类活动干扰指数最低,这与生态保护管控严格程度呈现很好地正相关。但是1980—2015年间重要生态空间面积比例均有所减少,减少幅度与管控严格程度没有表现出正相关。(2)从植被生态协同管控成效来看,植被覆盖总体呈现出自东向西逐步降低的特点,与东部分布有重点生态功能区和森林类自然保护区、西部分布较多的湿地类自然保护地的空间特征一致。但是,由于湿地及水域类型自然保护地面积占比较高,且分布在吉林西部草原和平原区的面积比例较高,自然保护地的年际变化较大、且植被覆盖稳定度低于重点生态功能区。(3)从水源涵养功能协同管控成效来看,水源涵养能力呈现出东部和西部高、中部低的特点,与这两个区域主要分布有森林、草地和湿地等重要生态空间密切相关,也与分布着大面积的重点生态功能区和各类自然保护地密切相关。自然保护区的水源涵养能力最高,且年际变化最小、稳定性最高。  相似文献   

16.
对乌海市《城市区域环境噪声标准》适用区域进行了划分,以乌海市2011年城区环境噪声监测统计数据为基础,分析了乌海市暴露在不同等效声级下的城区面积分布状况和达标情况。  相似文献   

17.
后勤装备防腐涂层加速试验环境谱研究   总被引:2,自引:1,他引:1  
结合后勤装备服役特点,综合考虑亚热带沿海地区湿热、紫外光照、盐雾等主要腐蚀因素的影响,建立了适用于后勤装备表面涂层的加速试验环境谱,给出了各环境块的具体确定方法,并且提出了建立加速谱与装备实际使用环境的当量加速关系的方法。为后勤装备外露关键部位涂层使用寿命评定、涂层有效性检验和腐蚀修理方案制定提供了重要的依据。  相似文献   

18.
烟气脱硫副产物的综合利用   总被引:11,自引:1,他引:11  
通过分析烟气脱硫石膏的性能 ,介绍了脱硫石膏的利用情况和研究进展 ,利用脱硫石膏生产建筑材料 ,如 β石膏和α石膏的工艺日臻成熟 ,利用脱硫石膏生产水泥辅料已进入工业化 ,而利用脱硫石膏生产充填尾砂胶结剂已经完成试验阶段 ,脱硫石膏在农业上也有很广泛的用途。  相似文献   

19.
哈尔滨松北区城市湿地的生态安全分析   总被引:2,自引:1,他引:1       下载免费PDF全文
以哈尔滨松北区城市湿地为研究对象,选择10个指标,采用因子分析法和聚类分析法,研究了松花江发生污染事故前后城市湿地的生态安全状况.结果表明:发生污染前哈尔滨松北区城市湿地东区的生态安全程度最高,发生污染后中区的生态安全程度最低;西区的抗干扰能力较差.各主因子中以水因子的下降幅度最大,说明水污染直接影响了哈尔滨松北区城市湿地的生态安全.最后有针对性地提出了哈尔滨松北区城市湿地的生态安全对策.   相似文献   

20.
天津市机动车二次有机气溶胶生成潜势的估算   总被引:5,自引:0,他引:5  
通过隧道实验得到天津市机动车排放的挥发性有机物(VOCs)的物种信息及各物种的浓度数据,检测得到88种VOCs,其中23种VOCs具有二次有机气溶胶(SOA)生成潜势.基于天津市机动车尾气挥发性有机污染物的监测数据,利用气溶胶生成系数(FAC)对天津市机动车排放VOCs的二次有机气溶胶生成潜势进行了估算.结果表明,邻-二甲苯、甲苯、苯、间-二甲苯、对-二甲苯、对-二乙苯是对SOA生成贡献最大的6个物种,各自SOA生成量分别为973.97,721.05,687.31,592.09,571.31,538.59t/a,分别占SOA生成潜势的13.87%、10.27%、9.79%、8.43%、8.13%、7.67%;芳香烃是对SOA生成贡献最大的前体物,其SOA生成量占SOA生成潜势的88.95%.因此,减少机动车芳香烃类物质的排放,可有效地减少SOA的生成量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号