首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine how the animal and algal components of the symbiotic sea anemone Aiptasia pulchella respond to changes in food availability and culture irradiance, sea anemones from a single clone were maintained at four irradiance levels (320, 185, 115, and 45 E m-2 s-1) and either starved or fed for 5 wk. Changes in protein biomass of sea anemones maintained under these conditions were not related to the productivity of zooxanthellae, since the protein biomass of fed A. pulchella decreased with increase in irradiance and there was no difference in protein biomass among starved sea anemones at the four irradiance levels. Except for the starved high-light sea anemones, the density of symbiotic zooxanthellae was independent of culture irradiance within both starved and fed. A. pulchella. Starved sea anemones contained over twice the density of zooxanthellae as fed sea anemones. Within both starved and fed individuals, chlorophyll per zooxanthella increased with decreasing culture irradiance while algal size remained constant (in fed sea anemones) at about 8.80 m diameter. Chlorophyll a: c 2 ratios of zooxanthellae increased with decreasing culture irradiance in zooxanthellae from starved sea anemones but remained constant in zooxanthellae from fed sea anemones. As estimated from mitotic index data, the in situ growth rates of zooxanthellae averaged 0.007 d-1 and did not vary with irradiance or feeding regime. Photosynthesis-irradiance (P-I) responses of fed A. pulchella indicated an increase in photosynthetic efficiency with decreasing culture irradiance. But there was no consistent pattern in photosynthetic capacity with culture irradiance. Respiration rates of fed sea anemones also did not vary in relation to culture irradiance. The parameter I k , defined as the irradiance at which light-saturated rates of photosynthesis are first attained, was the only parameter from the P-I curves which increased linearly with increasing culture irradiance. The daily ratio of net photosynthesis to respiration for A. pulchella ranged from 1.6 to 2.8 for sea anemones maintained at the three higher irradiances, but was negative for those maintained at 45 E m-2 s-1. Since the final protein biomass was greatest for sea anemones maintained at the lowest irradiance, these results indicate that sea anemone growth cannot be directly related to productivity of zooxanthellae in this symbiotic association.  相似文献   

2.
The temperate sea anemoneAnemonia viridis (Forskäl) contained about 11% lipid on a dry weight basis when maintained at light levels of about 10µE m–2 s–1 and a temperature of 10°C. Aposymbiotic forms of the anemone had similar lipid levels. These values are very low compared with tropical symbiotic Anthozoa in which lipid levels constitute up to 50% of dry weight. In symbioticA. viridis, <6% of total lipid consisted of the storage lipids, wax esters and triglycerides. Most of the triglyceride was stored in the animal tissues rather than the zooxanthellae. Zooxanthellae contained only small amounts of wax esters. An analysis was made of the wax ester, triglyceride and fatty acid composition of symbiotic anemones, isolated zooxanthellae and aposymbiotic anemones. Wax ester composition was similar in symbiotic and aposymbiotic forms. However, triglyceride composition differed. In particular trimyristin (C42) was found only within the symbiotic association. Fatty acids showed a high degree of unsaturation, and acids with both even and odd numbers of carbon atoms were found. The most abundant fatty acid was 16:0 in all samples, except for the total lipids from zooxanthellae in which the major fatty acid wastrans-18:1.  相似文献   

3.
Phototaxis in Anthopleura elegantissima, a sea anemone symbiotic with zooxanthellae, was investigated with special reference to oxygen as a possible controlling factor. Under high oxygen concentrations in seawater, movement towards light was not observed for symbiotic anamones as it was under normal oxygen concentrations. Both aposymbiotic and symbiotic anemones demonstrated movement towards high oxygen concentrations in seawater. Oxygen is, therefore, implicated as a controlling factor in phototaxis. Under laboratory conditions, increased intraclonal spacing occurred with low oxygen concentrations in seawater. In the field, individuals in symbiotic clones were spaced significantly closer than in aposymbiotic clones. Since intraclonal spacing is controlled by oxygen in the laboratory, spacing may also be affected in the field by oxygen; symbiotic clones may be spaced closer because they have better oxygen availability than do aposymbiotic clones.  相似文献   

4.
In order to examine the effect of light level on the storage lipids of the symbiotic sea anemoneAnemonia virudis (Forskäl), anemones were exposed to three experimental light regimes of 10, 100 and 300 E m-2s-1. Anemones were fed once a week. After 30 d there were no significant differences in the total lipid levels between anemones at any of the light intensities. However, after 60 d lipids had increased in proportion to light level in both the animal-tissue and zooxanthellae compartments. The higher levels of total lipid were in part due to increases in storage lipid (wax esters and triglycerides). Wax ester levels increased in the animal tissues but remained constant in the zooxanthellae, whereas triglycerides increased in both compartments. In contrast to fed anemones, starved anemones which were maintained at 300 E m-2s-1 for 30 or 60 d did not show a statistically significant change in lipid levels at 60 d, although a slight increase in the lipid level was observed. However, there was a significant increase in the storage lipids, which suggested that the non-storage phospholipids and structural lipids had declined as a result of cellular catabolism. The composition of the wax esters and triglycerides of both fed and starved anemones was analysed and compositional changes were observed at higher light intensities.  相似文献   

5.
Exposure of the temperate sea anemone Anemonia viridis Forskål to increased seawater temperature (from 16 to 26°C) reduced the lysosomal latency of coelenterate tissues. Lysosomes in the mesenterial filaments of anemones were destabilised by increased temperature, with greater destabilisation in heat-shocked symbiotic anemones than in heat-shocked aposymbiotic anemones in the early stages of the experiment. Lysosomal enzyme activity in zooxanthellae from heat-shocked symbiotic anemones was associated with the algal membranes and the cytoplasm of degenerate algal cells. While the relationship between host coelenterate and symbiotic alga may confer many benefits under normal conditions, comparison of the responses of symbiotic and aposymbiotic anemones to heat shock suggests that there may be disadvantages for symbiotic anemones under stress.  相似文献   

6.
Energy budgets were calculated for individuals of the sea anemone Anthopleura elegantissima (Brandt), collected in 1981 and 1982 from Bodega Harbor, California, USA. Rates of ammonium excretion were measured in high-and low-intertidal, symbiotic and aposymbiotic sea anemones within 24 h of collection. Among symbiotic and aposymbiotic individuals, no differences in excretion rate were found on the basis of intertidal height. However, rates of ammonium excretion in aposymbiotic anemones (2.14 mol NH + 4 g-1 h-1) were significantly higher than in symbiotic ones (0.288 mol NH + 4 g-1 h-1). Rates of excretion were used with estimated rates of oxygen uptake to calculate nitrogen quotients (NQ). NQ and RQ values from the literature were used to calculate an oxyenthalpic equivalent [501 kJ (mol O2)-1 for R+U], and mass proportions of protein (54%), carbohydrate (44%) and lipid (2%) catabolized during routine metabolism in this species 24 h after feeding. Integrated energy budgets of these experimental anemones were calculated from data on ingestion, absorption and growth, and estimates of translocated energy from the symbiotic algae. Contribution of zooxanthellae to animal respiration based on translocation=90% and RQ=0.97 are 41 and 79% in high-and low-intertidal anemones, respectively. Calculated scope for growth is greater than directly measured growth in both high-and low-intertidal individuals. The deficit, estimated as 30% of assimilated energy in high-intertidal anemones, is attributed to unmeasured costs (specific dynamic effect) or production (mucus). Low-intertidal anemones lost mass during the experiment, implying that the magnitude of the deficit was greater in these anemones than in upper intertidal individuals. Anemones from both shore levels lost zooxanthellae during the experiment, which contributed to energy loss since the contribution of the zooxanthellae is greater in low-intertidal anemones. Scope for growth is preserved in high-intertidal anemones (29% of assimilated energy) because metabolic demands are lower due to aerial exposure, and prey capture rate is higher compared to lowshore anemones. Although possibly underestimated, lower scope for growth in low-shore anemones may result from continuous feeding and digestion processes that are less efficient than those of periodically feeding high-intertidal anemones.  相似文献   

7.
Anemonia viridis (Forskäl) were collected from south-west Scotland and south-west England in October 1988. When exposed to 0.05 and 0.2mg 1–1 copper in sea water, anemones did not take up the metal in proportion to external concentrations. Results suggested thatA. viridis regulated copper by expelling symbiotic algae (or zooxanthellae) which were shown to accumulate copper. The use of aposymbiotic (non-zooxanthellate) anemones in similar metal-uptake experiments indicated that other mechanisms may also be involved in metal regulation. Mucus was produced byA. viridis when the anemone was exposed to copper, and it is proposed that mucus may be involved in the regulation process. The implication of this work on the use of coelenterates as biological indicators of environmental metal levels is discussed.  相似文献   

8.
Harland  A. D.  Davies  P. S. 《Marine Biology》1995,123(4):715-722
Dark respiration of the symbiotic sea anemone Anemonia viridis (Forskäl) was observed to increase by 34% when anemones were exposed to hyperoxic sea water (150% oxygen saturation) overnight, and by 39% after exposure to 6 h in the light at a saturating irradiance of 300 E m-2 s-1 at normoxia (100% oxygen saturation). No increase due to light stimulation was observed in aposymbiotic control anemones. In darkness, the oxygen concentration of the coelenteric fluid was hypoxic. However, within 10 min of anemones being illuminated, coelenteric fluid was hyperoxic, and it remained elevated throughout a 12 h light period. When measured over a 24 h period (12 h light: 12 h dark), the dark respiration rate increased gradually over the first 6 h of the light period until it was 35% above the dark night-time resting rate. It remained elevated throughout the remaining light period and for 2 h into the following dark period, after which it fell back to the resting rate. Gross photosynthesis (P gross) increased significantly when anemones were exposed to either hyperoxia (150% oxygen saturation) or 300 E m-2 s-1 at normoxia. This increase was not observed when symbiotic anemones were illuminated at a low-light intensity of 100 E m-2 s-1. The results of this study suggest that respiration in the dark is limited by oxygen diffusion and that normal respiration is restored in the daytime by utilisation of the oxygen released by photosynthesis. Furthermore, it appears that the increased respiration following exposure to high-light intensities provides a CO2-rich intracellular environment which further enhances the photosynthetic rate of the zooxanthellae.  相似文献   

9.
The temperate sea anemone Anthopleura elegantissima is facultatively symbiotic with unicellular algae. Symbiotic A. elegantissima can supplement heterotrophic feeding with excess photosynthate from their algal partners, while asymbiotic individuals must rely solely on heterotrophy. A. elegantissima individuals were collected from Swirl Rocks, Washington (48°25′6″ N, 122°50′58″ W) in July 2010, and prey capture and feeding characteristics were measured to determine whether asymbiotic individuals are more efficient predators. Feeding abilities were then measured again after a 3-week exposure to full sunlight or shaded conditions. Freshly collected asymbiotic anemones had larger nematocysts, but symbiotic individuals showed greater nematocyte sensitivity. Sunlight enhanced digestion and reduced cnida density in all anemones regardless of symbiotic state. Results suggest that the phototropic potential of A. elegantissima, as influenced by symbiotic condition, has little effect on heterotrophic capacity. The anemones appear to maximize heterotrophic energy input independent of the presence or identity of their algal symbionts.  相似文献   

10.
The sea anemone Anthopleura elegantissima hosts two phylogenetically different symbiotic microalgae, a dinoflagellate Symbiodinium (zooxanthellae, ZX) and a chlorophyte (zoochlorellae, ZC). The photosynthetic productivity (P), respiration (R), and contribution of algal carbon translocated to the host (CZAR) in response to a year’s seasonal ambient changes of natural light and temperature are documented for both ZX- and ZC-bearing anemones. Light and temperature both affect photosynthesis, respiration, and CZAR, as well as various algal parameters; while there are evident seasonal differences, for the most part the relative effects on P, R, and CZAR by the two environmental variables cannot be determined. Net photosynthesis (Pn) of both ZX and ZC was significantly higher during spring and summer. During these seasons, the Pn of ZX was always greater than that of ZC. Regardless of algal symbiont, anemone respiration (R) was significantly higher during the spring and summer. The annual net carbon fixation rate of anemones with ZX and ZC was 325 and 276 mg C anemone−1 year−1, respectively, which translates to annual net community productivity rates of 92 and 60 g C m−1 year−1 for anemones with ZX or ZC, respectively. CZAR did not show a clear relationship with season; however the CZAR for ZX was always significantly greater than for ZC. Lower ZX growth rates, coupled with higher photosynthetic rates and higher CZAR estimates, compared to ZC, suggest that if A. elegantissima is simply carbon limited, ZX-bearing anemones should be the dominant symbiont in the field. However ZC-bearing anemones persist in low light and reduced temperature microhabitats, therefore more than the translocation of carbon from ZC must be involved. Given that global climate change will increase water temperatures, the potential for latitudinal range shifts of both ZC and ZX (S. californium and muscatinei) might be used as biological indicators of thermal shifts in the littoral zone of the Pacific Northwest.  相似文献   

11.
Nutrient sufficiency of zooxanthellae in the sea anemone Aiptasia pallida cultured in low nutrient seawater depends on the availability of particulate food to the host. Zooxanthellae in anemones unfed for 20 to 30 d exhibited the following characteristics of nutrient deficiency: cell division rates decreased; chlorophyll a content gradually decreased from 2 to <1 pg cell–1; and C:N ratios increased from 7.5 to 16. Over a 3-mo period, algal populations in unfed anemones gradually decreased, indicating that zooxanthellae were lost faster than they were replaced by division. The mitotic index of zooxanthellae in unfed anemones was stimulated either by feeding the host or by the addition of inorganic N and P to the medium. Whether algae are nutrient-limited in hosts under field conditions has not been examined fully; however, C:N ratios in zooxanthellae from field-collected hosts are slightly higher (9.4 vs 7.5) than in hosts fed to repletion in laboratory cultures. This observation might indicate N limitation in the field.  相似文献   

12.
Reproduction of the sea anemone Anthopleura dixoniana (Haddon and Shackleton) from the high intertidal zone of southern Taiwan (120°41 E; 22°01N) was studied from April 1987 through March 1989. A. dixoniana spawns once a year, in July, and divides asexually by longitudinal fission throughout the year, with a peak in July. During the spawning season, sea anemones>3 mm pedal dise diameter can be sexed, and display a 1:1 sex ratio. Dividing sea anemones are significantly larger than non-dividing individuals, and increase in body size before fission. Under laboratory conditions, individuals kept at 28 C and fed had larger oocytes and a higher division rate than those kept at 18, 22, 25 or 32°C or starved. The division rate significantly influenced the oocyte diameter. The present study revealed for the first time, that a long photoperiod (14 h hight:10 h dark) significantly enhances the growth of oocytes in A. dixoniana under laboratory conditions.  相似文献   

13.
W. E. Zamer 《Marine Biology》1986,92(3):299-314
High-intertidal (H) individuals of the sea anemone Anthopleura elegantissima (Brandt) are exposed aerially up to 18 h each day, unlike low-intertidal (L) individuals which may be continuously immersed over many days. Thus, H anemones experience shorter feeding periods compared to L anemones. From 1980 to 1982, H and L anemones were observed and collected at the mouth of Bodega Harbor in North Central California (USA) to determine whether any physiological adaptations mitigate the energetic effects of reduced feeding time in H anemones. Weight of prey in coelenterons of H anemones was three times more than that of L anemones following a single immersion period. This difference is not due to slower digestion rates in H anemones. Prey residence time in coelenterons (4h) was equivalent in both groups. Different prey weights imply that ingestion rates were greater in H individuals. However, all anemones had similar weight-specific feeding-surface areas. Different prey-capture rates result from increased receptivity to prey in H anemones, rather than from increases in feeding surface. Absorption efficiency was inversely related to ration size in anemones from both shore positions. H individuals absorbed food more efficiently than L individuals fed equivalent rations. Ration, not exposure conditions, affected absorption efficiency. Daily growth rates were 1.5 to 1.8% and 1.2 to 1.4% of dry body weight in H and L anemones fed large rations (4.0 to 5.6% of dry body weight), respectively. H anemones fed smaller daily rations, approximating amounts of zooplankton captured naturally (1% of anemone dry weight), had higher growth rates and growth efficiencies than L anemones, which lost mass. Higher growth rates in H anemones, which are supported by higher prey-capture rates, result in attainment of minimum body size for reproduction in a relatively short period of time despite reduction in time available for feeding, thus improving relative fitness of these anemones in the upper intertidal zone.  相似文献   

14.
The metabolite exchange in alga–invertebrate symbioses has been the subject of extensive research. A central question is how the biomass of the algal endosymbionts is maintained within defined limits under a given set of environmental conditions despite their tremendous growth potential. Whether algal growth is actively regulated by the animal cells is still an open question. We experimentally evaluated the effect of inorganic nutrient supply and host-animal nutritional status on the biomass composition, growth and cell-cycle kinetics of the endosymbiotic dinoflagellate Symbiodinium pulchrorum (Trench) in the sea anemone Aiptasia pulchella. Dinoflagellates in anemones starved for 14?d exhibited lower growth rates, chlorophyll content and higher C:N ratios than in anemones fed Artemia sp. (San Francisco brand #65034) nauplii every 2 d, indicating N-limitation of the algae during starvation of the host animal. Manipulation of the dissolved inorganic nutrient supply through ammonium and phosphate additions induced a rapid recovery (half time, t ½~ 2?d) in the C:N ratio of the dinoflagellate cells to levels characteristic of N-sufficient cells. The mitotic index and population growth rate of the dinoflagellate symbionts subjected to this enrichment did not recover to the levels exhibited in fed associations. Flow cytometric analysis of dinoflagellate cell size and DNA content revealed that the duration of the G1 phase (first peak of DNA content: 70 to 100 relative fluorescence units, rfu) of their cell cycle lengthened dramatically in the symbiotic state, and that the majority of algal biomass increase occurred during this phase. Covariate analysis of dinoflagellate cell size and DNA-content distributions indicated that the symbiotic state is associated with a nutrient-independent constraint on cell progression from G1 through the S phase (intermediate DNA content: 101 to 139?rfu). This analysis suggests that the host-cell environment may set the upper limit on the rate of dinoflagellate cell-cycle progression and thereby coordinate the relative growth rates of the autotrophic and heterotrophic partners in this symbiotic association.  相似文献   

15.
Aeolidiella stephanieae is a stenophagous tropical nudibranch that feeds exclusively on glass anemones of the genus Aiptasia. These sea anemones usually harbour endosymbiotic photosynthetic dinoflagellates that contribute to the nutrition of their host by providing photosynthetates, such as fatty acids (FA). The present work determined the effect of parental diets on the FA profile of A. stephanieae embryos by feeding breeding pairs of this nudibranch with either symbiotic or aposymbiotic A. pallida. Contrasting FA profiles, namely in the levels of palmitic acid (16:0) and docosahexaenoic acid (DHA, 22:6n-3), were recorded for both parental diets and egg masses produced by nudibranchs eating either symbiotic or aposymbiotic A. pallida. Noteworthy effects of parental dietary FAs on egg masses were also observed, particularly for DHA, which is mainly synthetized by the endosymbionts of A. pallida. Additionally, the present study also highlights how bleaching events may promote cascading effects on the nutrition of marine species with a stenophagous diet, such as A. stephanieae.  相似文献   

16.
The spider crab Inachus phalangium is common in the sublitoral fringe of the Mediterranean Sea and north-eastern Atlantic Ocean, where it can be found in association with the snakelocks sea anemone Anemonia viridis. Studies concerning its activity patterns and the role of the host sea anemone are lacking. Our study aimed at investigating activity rhythms and resources utilization of I. phalangium reared in captivity. The main behavioral traits exhibited by I. phalangium are performed mostly at night. Two experiments were designed, one examined the time budget of various behavioral acts and the degree of association with the sea anemone, the other analyzed the behavioral response to algae and anemones. We showed that algae have a crucial role in the biology of I. phalangium and that crabs are ready to leave the protection of their host to obtain them. Algae represent both the major component of the diet and one of the most utilized sources of masking material of I. phalangium, which provide, together with specialized cryptic behaviors, protection against predators. Although our data suggest that the association with A. viridis is not obligatory, but the role of the snakelocks sea anemone in the life of I. phalangium is still central, both as an anti-predatory defense and as a nutritional source. The association of I. phalangium with algae and the anemone is a facultative biotrophic commensalistic symbiosis.  相似文献   

17.
18.
The temperate anemone Anthopleura elegantissima hosts two phylogenetically different symbiotic microalgae, a dinoflagellate Symbiodinium (zooxanthellae, ZX) and a chlorophyte (zoochlorellae, ZC), throughout certain regions of its latitudinal range. Because of the broad intertidal and geographic range of this anemone, we examined the role of irradiance to ascertain which specific symbiotic parameters are affected and whether light intensity governs the observed distributions of natural populations of ZX and ZC. Irradiance appears to be a key factor in regulating both the photophysiology and metabolism of this alga-cnidarian association. Regardless of light intensity, algal densities remained stable for anemones harboring ZX or ZC, whereas the mitotic indices of ZX and ZC both varied directly with light intensity. The chlorophyll content of ZX remained fairly constant regardless of irradiance; in contrast, ZC chlorophyll content was inversely proportional to light intensity. Regardless of irradiance, the carotenoid content of both symbionts was constant; however, ZX carotenoid levels were higher than those of ZC. Net photosynthesis was directly related to light intensity for both algal symbionts and ZX photosynthetic rates were consistently higher than those of ZC. Similarly, the potential carbon contribution of ZX and ZC to animal respiration (CZAR) displayed a direct relationship with light intensity, peaking at 800 µmol·m-2·s-1, then subsequently declined. Lower ZX growth rates, coupled with higher photosynthetic rates and higher CZAR estimates, compared to ZC, suggest that the ZX should be the dominant symbiont as light intensity increases; this may explain the high densities of anemones in the field containing ZX where the levels of irradiance are naturally high. These results support the interpretation that irradiance is a significant environmental parameter that dictates the microhabitat and latitudinal distribution of the two symbiotic algal taxa. This is the second in a series of papers examining the physical parameters that influence the distribution of ZX- and ZC-bearing A. elegantissima.  相似文献   

19.
Sodium cyanide (NaCN) was used to partially uncouple respiration and photosynthesis in the symbiotic sea anemone Condylactis gigantea. NaCN significantly increased the ratio of gross photosynthesis to respiration in both intact tentacles and isolated zooxanthellae (Symbiodinium microadriaticum), increased carbon translocation from 17.7±3.5% of total fixed in controls to 43.5±5.8%, and doubled the amount of photosynthetically fixed carbon accumulating in the coelenterate host over that in controls. Only 2% of the non-particulate radioactivity recovered in the host tissue was 14C-glycerol when uninhibited symbiotic tentacles were incubated in 14C-bicarbonate for 1 h. At 10-5 M NaCN, approximately 25% of the host nonparticulate radioactivity was recovered as 14C-glycerol, the absolute concentration of glycerol in the host tissue was three times higher than in controls, and 14C-glycerol was found in the medium. While glycerol has been proposed to play a major role in the translocation of photosynthetically fixed carbon from zooxanthellae to their coelenterate hosts, its concentration has never been measured in the animal and algal components of the symbiosis. The isolated zooxanthellae contained 3.62±0.33 mM glycerol, 26x the 0.141±0.02 mM found in the anemone. Aposymbiotic anemone tissue contained 0.169±0.06 mM glycerol. The rate of glycerol mineralization was not saturated even when exogenous glycerol levels were 70x internal concentrations. These data show that respiration and photosynthesis in symbiotic associations may be partially uncoupled by NaCN, and that this uncoupling allows the verification of the translocation and rapid catabolism of glycerol within the host.  相似文献   

20.
Dissolved amino acids (3H-phenylalanine, 3H-proline) were accumulated and incorporated into proteins and glycoproteins by sea anemones. On objects (glass rods, pipe cleaners or filter paper) which had touched labelled anemones, tritiated substances could be detected. The mucus of labelled anemones was analysed by disc-electrophoresis. Tritium activity was found in the bands (stained by amino black). Anemone fishes adapted to labelled anemones had 4 times more tritium activity on their surface than control fishes. Most radioactivity was found on those regions which made closest contact with the anemones. The mucus of anemone fishes adapted to labelled anemones was also analysed by disc-electrophoresis. The analysis revealed protein-containing fractions in which 3H-amino acids were incorporated. The pattern of tritium activity in disc-electropherograms from labelled anemones corresponds to that of fishes adapted to those anemones. Anemones produce specific substances which influence the discharge of their nematocytes. These substances have special functions in the normal behaviour of the anemones. The substances provide protection against self-nettling and prevent the discharge of nematocytes into nearby objects which the tentacles continuously contact. The production of these substances by anemones is completely separate from the association with anemone fishes. The fishes thus simply exploit a mechanism existing independently in the anemones. Therefore, it is possible to form, in an aquarium, unnatural associations between anemone fishes and anemone species which never live in association with fishes in their natural biotope. On the basis of previous information, as well as on these new data, it is possible to develop a model which explains the control of nematocyte discharge: Substances with inhibitory qualities (protecting substances) are produced by the anemones themselves, and de-sensitize the sensory inputs of the anemones (nematocytes and sensory cells). Sensitization takes place as soon as the anemones come into contact with “stimulating substances”. This happens if anemones are touched by food objects or by anemone fishes which have been previously isolated from anemones. The surfaces of these fishes are not impregnated with protecting substances. Adapted anemone fishes, neighbouring anemones of the same species and other “adapted” objects are coated with the inhibitory substances and thus do not induce nematocyte discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号