首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

2.
R. M. Morton 《Marine Biology》1990,105(3):385-394
The fishes occurring in a subtropical mangrove (Avicennia marina) area in Moreton Bay, Australia, were studied for one year (November 1987 to November 1988, inclusive). Fishes within the mangroves were sampled using a block net, whilst those in adjacent waters were sampled using seine and gill nets. Forty six percent of the species, 75% of the number of fishes and 94% of the biomass taken during the study (all methods combined) were of direct importance to regional fisheries. The fish community utilising the habitat within the mangrove forest differed from that occurring in adjacent waters in terms of density, standing crop, species composition and diversity-index values. Standing-crop estimates for the fishes occurring within the mangroves (study period mean ± SD = 25.3 ± 20.4 g m–2) were amongst the highest recorded values for estuarine areas whilst those for adjacent waters (2.9±2.3 g m–2) were comparable to those of other estuarine studies.  相似文献   

3.
We have analyzed the composition, diversity, density and biomass of a temporal series of samples taken in a Tubularia indivisa community, which dominates a shipwreck in the North Sea waters (N 51°23′,730–E 02°29′,790, 17 nautical miles from the coast, 30 m depth). This shipwreck has structures emerging up to 8 m above the seabed. Water temperature ranged from 4.2°C in March to 20.3°C in August. Salinity showed few variations around 33.9 psu. Bottom tidal currents followed a semi-diurnal cycle and were preferentially NE oriented with 84% of them in the range 0.25–0.75 m s−1. The mean value for total suspended matter was 6.2 mg l−1 with large variations on a monthly scale. The species richness of samples varied from 15 in October to 42 in August with a mean value of 33 species. Diversity indices were higher during autumn and winter because of the strong dominance of a few crustacean species during the warmer months. The total density of individuals ranged from 6,500 ind m−2 in October to 445,800 ind m−2 in July, most of these individuals belonging to the amphipod species Jassa herdmani. The biomass of the T. indivisa community varied from 9 g AFDW m−2 in October to 1,106 g AFDW m−2 in July, with T. indivisa itself constituting between 59 and 82% of the total biomass. The biomass of T. indivisa was positively correlated with species richness and with the density of 23% of the species identified on this community, suggesting that T. indivisa plays an important structural role in this habitat. This was further confirmed by the number of species associated with T. indivisa which was generally superior to 55% of the sorted species. Multivariate analysis indicated strong differences between spring/summer−autumn/winter assemblages mostly but not solely due to the abundance patterns of species. These findings support the conclusion that shipwrecks in Belgian waters allow the development of assemblages dominated by a high biomass of T. indivisa which in turn provides shelter for high densities and biomass of epizoites. These assemblages will further show large monthly variations in densities and composition due to large variation in T. indivisa biomass under an apparent repetitive annual cycle. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Day-night differences in abundance and biomass of demersal zooplankton in the water column were determined by trapping these animals as they emerged from the sand substrate in a kelp forest (Macrocystis pyrifera) ecosystem off Santa Catalina Island, California, USA. The day and night sampling periods of the 24 June 1979 new moon each lasted 12 h. Abundance and biomass of total demersal zooplankton were significantly higher in night samples. A mean of 2,425±1,168 demersal zooplankton m-2 24 h-1 migrated over a diel cycle; 97% of these animals were crustaceans. The mean biomass of demersal zooplankton was 94.2±27.6 mg ash-free dry wt m-2 24 h-1. No significant differences were found in either the abundance or biomass of demersal zooplanktion collected in low and high traps, suggesting that most animals collected 25 cm off the bottom can sustain swimming to at least 75 cm and that both traps give comparable estimates of the amount of demersal zooplankton available to planktivorous predators.  相似文献   

5.
Zooplankton biomass in the ice-covered Weddell Sea,Antarctica   总被引:5,自引:0,他引:5  
Zooplankton was sampled by a Rectangular Midwater Trawl (RMT 1 + 8) in Weddell Sea surface waters (0 to 300 m) between 66 and 78°S during austral summer (February – March 1983). Sixty-nine taxa including different developmental stages were considered and divided into 16 size classes between <1 and >39.5 mm length. Biomass was determined by taxon and size class for three different meso- and macroplankton communities in the oceanic region, on the northeastern shelf and on the southern shelf of the Weddell Sea. The highest biomass of 11.2 mg DW m–3 (3.4 g DW m–2) was found in the northeastern shelf community (70 to 74°S), where juvenile and adultEuphausia crystallorophias accounted for 3.7 mg DW m–3 (1.1 g DW m–2). Although not quantitatively sampled, early copepodite stages (CI to CIII) ofCalanoides acutus andCalanus propinquus ranked second with 2.7 mg DW m–3 (0.8 g DW m–2). Biomass in the northeastern shelf community was concentrated in the size ranges 1 to 4 mm and 19.5 to 39.5 mm. The oceanic community of the central Weddell Sea was dominated by copepods smaller than 5 mm, which made up half of the total oceanic biomass. The tunicateSalpa thompsoni (7.0 to 8.5 mm) was the dominant single species with 1.6 mg DW m–3 (0.5 g DW m–2). Euphausiids, mainly juvenile and adult krillEuphausia superba, comprised 1.2 mg DW m–3 (0.4 g DW m–2). Total standing stock in the oceanic community was 9.4 mg DWm–3 (2.8 g DW m–2). Lowest biomass values were found in the southern shelf community (south of 75°S) with 4.0 mg DW m–3 (1.2 g DW m–2), concentrated in the 1 to 4 mm and 14.5 to 34.5 mm size classes. Abundant species were the pteropodLimacina helicina (1 to 2 mm; 0.7 mg DW m–3; 0.2 g DW m–2) andE. crystallorophias (24.5 to 39.5 mm; 0.9 mg DW m–3; 0.3 g DW m–2). The data reveal that it is essential to distinguish among subsystems in the Southern Ocean. This leads to a better understanding of the structure and function of those pelagic food webs which represent alternatives to the paradigmatic krill-centered system.  相似文献   

6.
由于受人类活动干扰的加强以及受与长江干流之间"江湖关系"变化的影响,近年来鄱阳湖水生生态系统的状况及变化受到较多关注。对底栖动物群落结构的研究将有助于了解鄱阳湖生态系统结构现状及影响因子,对鄱阳湖保护对策的制定形成有效支撑。2016年7月,对鄱阳湖湖区(分别于鄱阳湖保护区和南矶山保护区)的底栖动物群落结构及相关环境因子进行了调查。调查共发现大型底栖动物27种,隶属于5门8纲,平均密度为48.40 ind.·m-2,其中主要以软体动物门为主;平均生物量为28.12 g·m-2,亦主要由软体动物门贡献。湖区主要优势种为河蚬(Corbicula fluminea)(优势度y=0.0655)、铜锈环棱螺(Bellamya aeruginosa)(y=0.0336)、霍甫水丝蚓(Limnodrilus hoffmeisteri)(y=0.0268)。底栖动物密度、生物量及多样性指数均呈现出鄱阳湖保护区高于南矶山保护区的格局,且二者在群落组成上有明显差异,鄱阳湖自然保护区主要以腹足纲和寡毛纲为主,南矶山自然保护区主要以瓣鳃纲和腹足纲为主。典范对应分析的结果显示,鄱阳湖保护区主要受到高水深、低浊度及高溶氧的影响;南矶山保护区各样点之间群落相似性较差,分别受不同因子的影响,这表明在各区域内部,局域微生境在局域群落结构的塑造上起主要作用,因此该区域内生态系统的保护应适当考虑空间尺度。  相似文献   

7.
Zooplankton species composition and biomass were investigated during the spring of 1984 in three areas west of Ireland. In general, biomass of the gelatinous zooplankters [Salpa fusiformis (Cuvier) forma gregata and solitaria, Cymbulia sp., Euclio sp.; max. 360 mg Cm-3] exceeded that of other zooplankton namely copepods (max. 70 mg C m-3). Feeding by salps in the upper layers of all areas during the observed diatom spring bloom resulted in sedimentation of diatom-rich salp fecal pellets. This process ended the diatom spring bloom prior to nutrient depletion in surface waters and, thus, prior to mass sedimentation of algal cells.Publication No. 17 of the SFB 313 at Kiel University  相似文献   

8.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

9.
The copepod community observed during an 18-month period at the mouth of eutrophic Kingston Harbour, Jamaica, was dominated by small species of Parvocalanus, Temora, Oithona, and Corycaeus. Mean copepod biomass was 22.1 mg AFDW m−3 (331 mg m−2). Annual production was 1679 kJ m−2, partitioned as 174 kJ m−2 naupliar, 936 kJ m−2 copepodite, 475 kJ m−2 egg and 93 kJ m−2 exuvial production. All nauplii, most copepodites and many adults, equivalent to half of the biomass and production, were missed by a standard 200-μm plankton net, emphasizing the importance of nauplii and small species in secondary production estimates. The evidence suggests that growth rates and production are generally not food limited, and we speculate that size-selective predation shapes the structure of the harbour community. Biomass and production are higher than previous estimates for tropical coastal waters, but comparable to other eutrophic tropical embayments and many productive temperate ecosystems. Far from being regions of low productivity, tropical zooplankton communities may have significant production and deserve greater research attention than they currently receive. Received: 19 September 1997 / Accepted: 21 October 1997  相似文献   

10.
Productivities of two cohorts of Chordaria flagelliformis (O. F. Müll.) C. Ag. were estimated from measured changes in biomass and survivorship over time. Maximum productivity during the summer growing season was 2.6 g C m-2 d-1. Although this figure is relatively high, the short growing season results in an annual production of only 89 g C m-2. The significance of primary production by C. flagelliformis lies in its seasonal timing. During the summer growth period, 50% of production was recycled directly by detrital material. During the same time period, productivity and biomass losses of other seaweeds are at their lowest.  相似文献   

11.
Significant concentrations of the large oncholaimid Metoncholaimus scissus Wieser and Hopper (1967) (>7000 animals/24 cm2 area or 2.68x106 specimens/m2) have been noted in soft-bottom turtle grass communities. Activities of the nematode frequently show an indirect relationship to blooms of the benthic diatom Pleurosigma balticum. Analysis of biomass data for M. scissus (as much as 28 g wet weight/m2) demonstrate the importance of microsite activity and sensitivity of the species to small significant changes in the benthic environment.This work was supported by grant GM 12824 from the National Institutes of Health to the Institute of Marine and Atmospheric Sciences, University of Miami. Contribution No. 1188 from the Institute of Marine and Atmospheric Sciences, University of Miami and from the Entomology Research Institute, Research Branch, Canada Department of Agriculture, Ottawa.  相似文献   

12.
于2007年7月—2008年5月,分季度对丹江口水库底栖动物群落及水环境进行为期一年的调查。运用经验公式估算丹江口水库大型底栖动物群落的生产力,并分析底栖动物密度、生物量、生产力及P/B系数的空间分布,探讨环境因子与底栖动物群落生产力空间分布的关系。结果显示,丹江口水库底栖动物年平均密度、生物量及生产力分别为4 761 ind·m~(-2)、1.61 g DM·m~(-2)和35.45 g DM·m~(-2)·y~(-1),P/B系数为22.0 y~(-1)。不同区域生产力差异很大,湖泊区达61.80 g DM·m~(-2)·y~(-1),而支流区仅有5.48 g DM·m~(-2)·y~(-1)。P/B系数同样在湖泊区达到最大,为34.0 y~(-1);在丹江过渡区最低,为13.1 y~(-1)。颤蚓是生产力的主要贡献者,周年生产力为31.85 g DM·m~(-2)·y~(-1),占总生产力的90%。湖泊区由于其稳定的水动力条件,为颤蚓提供了非常适宜的生境,因此具有很高的生产力水平。与之相反,支流区由于水体扰动较大,底栖动物生物量及生产力水平均较低。从生产力的角度研究丹江口水库底栖动物群落的空间分布规律及影响因子,对丹江口水库的生态管理具有参考价值。  相似文献   

13.
Winter and summer zooplankton maxima were observed on both near-reef and offshore sampling sites in the northern part of the Gulf of Aqaba, with summer maxima smaller than those of winter and more characterized by larval forms. Near-reef zooplankton biomass was generally several times greater than that observed 2 km offshore. During 1987, a near-reef maximum of 155 ind. or 12.2 g wet biomass m–3 was observed in March, while 103 ind. or 8.5 g wet biomass m–3 was observed in July. In the same year, 2 km offshore a maximum of 53 ind. or 2.5 g wet biomass m–3 was observed in February, while a maximum of 33 ind. or 0.5 g wet biomass m–3 was noted in July. The following year, 1988, the near-reef zooplankton abundances were little changed, but offshore zooplankton abundances were much higher (317 m–3). During 1987, the dominant winter (March) forms near the reef were gammarid amphipods, at maximum concentrations of 100 ind. m–3, where the summer (July) maximum was composed primarily of mysids (34 m–3), gammarid amphipods (30 m–3), and fish eggs (24 m–3). The offshore winter zooplankton fauna was characterized by copepods and appendicularians, each at a maximum concentrations of ca 13 ind. m–3, while the summer maximum was dominated by brachyuran zoea (31 m–3). Though the 1988, winter near-reef zooplankton community compositions were similar to those of 1987, the offshore zooplankton fauna was dominated by ostracods, which were relatively rare in previous years. Preliminary data suggests that holoplanktonic forms like chaetognaths, copepods and appendicularians, at an offshore site exhibit different patterns of vertical migration than those near the reef. This different behavior may result from different species compositions of these taxa or from high concentrations of pseudoplanktonic bentho-neritic peracarid crustaceans.Please address correspondence and reprint requests to T. Echelman, Marine Science Research Center, State University of New York, Stony Brook, New York 11794-5000, USA  相似文献   

14.
15.
While it is known that Antarctic sea ice biomass and productivity are highly variable over small spatial and temporal scales, there have been very few measurements from eastern Antarctic. Here we attempt to quantify the biomass and productivity and relate patterns of variability to sea ice latitude ice thickness and vertical distribution. Sea ice algal biomass in spring in 2002, 2003 and 2004 was low, in the range 0.01–8.41 mg Chl a m−2, with a mean and standard deviation of 2.08 ± 1.74 mg Chl a m−2 (n = 199). An increased concentration of algae at the bottom of the ice was most pronounced in thicker ice. There was little evidence to suggest that there was a gradient of biomass distribution with latitude. Maximum in situ production in 2002 was approximately 2.6 mg C m−2 h−1 with assimilation numbers of 0.73 mg C (mg Chl a)−1 h−1. Assimilation numbers determined by the 14C incubations in 2002 varied between 0.031 and 0.457 mg C (mg Chl a)−1 h−1. Maximum fluorescence quantum yields of the incubated ice samples in 2002 were 0.470 ± 0.041 with E k indices between 19 and 44 μmol photons m−2 s−1. These findings are consistent with the shade-adapted character of ice algal communities. In 2004 maximum in situ production was 5.9 mg C m−2 h−1 with an assimilation number of 5.4 mg C (mg Chl a)−1 h−1. Sea ice biomass increased with ice thickness but showed no correlation with latitude or the time the ice was collected. Forty-four percent of the biomass was located in bottom communities and these were more commonly found in thicker ice. Surface communities were uncommon.  相似文献   

16.
Growth and secondary production of pelagic copepods near Australia's North West Cape (21° 49 S, 114° 14 E) were measured during the austral summers of 1997/1998 and 1998/1999. Plankton communities were diverse, and dominated by copepods. To estimate copepod growth rates, we incubated artificial cohorts allocated to four morphotypes, comprising naupliar and copepodite stages of small calanoid and oithonid copepods. Growth rates ranging between 0.11 and 0.83 day–1 were low, considering the high ambient temperatures (23–28°C). Calanoid nauplii had a mean growth rate of 0.43±0.17 day-1 (SD) and calanoid copepodites of 0.38±0.13 day-1. Growth rates of oithonid nauplii and copepodites were marginally less (0.38±0.19 day–1 and 0.28±0.11 day–1 respectively). The observed growth rates were suggestive of severe food limitation. Although nauplii vastly outnumbered copepodite and adult copepods, copepodites comprised the most biomass. Copepodites also contributed most to secondary production, although adult egg production was sporadically important. The highest copepod production was recorded on the shelf break (60 mg C m-2 day-1). Mean secondary production over both shelf and shelf break stations was 12.6 mg C m-2 day-1. Annual copepod secondary production, assuming little seasonality, was estimated as ~ 3.4 g C m-2 year-1 (182 kJ m-2 year-1).Communicated by G.F. Humphrey, Sydney  相似文献   

17.
Shallow rocky habitats in SW Apulia (SE Italy, Mediterranean Sea) were surveyed in late spring 2002 to assess distribution patterns of sea urchins (Paracentrotus lividus and Arbacia lixula) and barren habitats (coralline barrens and bare substrates) in rocky reefs impacted by the destructive fishery of the rock-boring date-mussel Lithophaga lithophaga. Sea urchin density, test size-structure and biomass, and the percent cover of barrens were evaluated at four locations (5–6 km apart from each other), two heavily impacted by the date-mussel fishery and two controls. Sea urchin density and barren habitat cover were assessed at two and three sites (100–300 m apart), respectively, within each location. Sea urchin biomass was evaluated only at the scale of locations. Average density of P. lividus did not significantly change between impacted locations and controls, whereas A. lixula showed a greater density at the impacted locations. Distribution patterns of A. lixula, in addition, differed at the spatial scale of a few metres between impacted locations and controls, being generally more aggregated at the controls. The size-frequency distribution (test diameter) of P. lividus showed a mode at 3–4 cm at the impacted locations compared to a mode at 2–3 cm in the controls. The size-frequency of A. lixula was bimodal at the damaged locations (with modes at 1–2 and 4–5 cm, respectively) and unimodal (with the mode at 4–5 cm) at the controls. Average biomass of both sea urchins (P. lividus and A. lixula) was two- to fourfold greater at the impacted locations (~600 g wet wt m–2) than at the controls (150–250 g wet wt m–2). Barren habitats had a far greater average cover (mainly of macroalgae) at the impacted locations (from 79% to 96%) than at control locations (from 7% to 21%). These results show that the date-mussel fishery may have the potential to affect distribution patterns of sea urchins and to greatly enhance the percent cover of barren grounds in shallow Mediterranean rocky reefs.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

18.
The annual cycle of protozooplankton in the Kiel Bight   总被引:6,自引:0,他引:6  
Protozooplankton (heterotrophic dinoflagellates and ciliates) composition and biomass was studied in a 20-m water column in the Kiel Bight on 44 occasions between January 1973 and April 1974. Both groups attained comparable biomass maxima during spring and autumn (0.3 to 0.7 g C m-2 in the 20-m water column) and biomass levels were much lower in summer and lowest in winter. The spring protozooplankton maximum coincided with that of phytoplankton and during the rest of the year, protozooplankton stocks did not appear to be food limited as phytoplankton stocks were large throughout; many protozoans with ingested microplankton cells were observed, indicating that their potential food supply is not restricted to nanoplankton. Non-loricate organisms dominated biomass of the ciliates and tintinnids were of little importance. Tintinnids predominated in plankton samples concentrated by 20 m gauze indicating that most non-loricate ciliates, irrespective of size, were not retained. When phytoplankton sotcks were large (>3 g C m-2) but those of metazooplankton small, as in spring and autumn, protozooplankton were the major herbivores with biomass levels comparable to those attained in summer by metazooplankton ( 0.5 g C m-2). A highly significant negative correlation was found between protozooplankton and metazooplankton during the plankton growth season. Predation by the latter is thus an important factor regulating size of the protozooplankton population, although other factors also appear to be in operation. Loss rates of the pelagic system through sedimentation are highest in spring and autumn when protozooplankton dominate the grazing community and loss rates are much lower in summer when metazooplankton are the dominant herbivores. Apparently, the impact of protozooplankton grazing on the pelagic system is quite different to that of the metazooplankton.Publication No. 268 of the Joint Research Programme (SFB 95), Kiel University  相似文献   

19.
The giant kelp Macrocystis pyrifera is one of the largest and fastest growing seaweeds and is dominant over large areas of the west coast of North America. A model of its growth has been developed which describes plant biomass and production over the course of a year as a function of environmental parameters which affect the light flux. Such parameters include water clarity, spacing between plants, bottom depth, latitude, harvesting activity, and photosynthetic response (P max and I k ). Model results for a standard set of conditions (latitude 33°N, 3 m plant spacing, water absorbance of 0.115 m-1 and 12 m depth) yield a peak daily gross production of almost 6 g C m-2 d-1, peak daily net production of almost 3 g C m-2 d-1, and a peak specific growth rate of about 0.022 d-1. Annual gross production for this case is 1 567 g C m-2 yr-1; annual net production is 537 g C m-2 yr-1. These values are comparable to those from field measurements. Size and timing of biomass and production peaks are affected by changes in the parameters describing the light field, with peaks usually occurring later in the year for more adverse circumstances. Inhigher latitudes, the seasonal variation is so extreme that the plant could not last the year at 53° N in 12 m of water, although it is able to survive the year in shallower water. Harvesting has severe effects on biomass and production. Model results suggest that light limitation is a very important constraint on kelp growth that should not be overlooked. This implies that differences in parameters describing two environments must be considered when comparing results obtained at different locales.  相似文献   

20.
The biology and ecology of the Antarctic scallop Adamussium colbecki has been investigated on the west side of McMurdo Sound, Antarctica, principally at Explorers Cove, during the austral summer of 1981–1982. This conspicuous benthic invertebrate exhibits highest densities, 85 individuals m-2, in shallow (4 to 6 m) water. Densities decrease to 20 m-2 at 30 m. Biomass levels are highest in shallow water, 1 600 g wet wt m-2. Provisional growth information suggests that 8 cm individuals are about 12 yr old. Mortality is apparently caused chiefly by a hyposaline lens of seawater, which forms under the sea ice during the summer melt; predators do not appear to be important. High biomass levels and a short generation time suggest that A. colbecki is an important species in a very productive community on the west side of McMurdo Sound. The shallow benthos of Explorers Cove is an important exception to the generalization that Antarctic ecosystems are dominated by indigestible filter-feeders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号