首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies indicate fecal coliform bacterial concentrations, including Escherichia coli (E. coli), characteristically vary by several orders of magnitude, depending on the hydrology of storm recharge and discharge. E. coli concentrations in spring water increase rapidly during the rising limb of a storm hydrograph, peak prior to or coincident with the peak of the storm pulse, and decline rapidly, well before the recession of the storm hydrograph. This suggests E. coli are associated with resuspension of sediment during the onset of turbulent flow, and indicates viable bacteria reside within the spring and stream sediments. E. coli inoculated chambers were placed in spring and stream environments within the mantled karst of northwest Arkansas to assess long term (> 75 days) E. coli viability. During the 75‐day study, a 4‐log die‐off of E. coli was observed for chambers placed in the Illinois River, and a 5‐log die‐off for chambers placed in Copperhead Spring. Extrapolation of the regression line for each environment indicates E. coli concentration would reach 1 most probable number (MPN)/100 g sediment at Copperhead Spring in about 105 days, and about 135 days in the Illinois River, based on a starting inoculation of 2.5 × 107 MPN E. coli/100 g of sediment. These in situ observations indicate it is possible for E. coli to survive in these environments for at least four months with no fresh external inputs.  相似文献   

2.
Near-channel hill-country wetlands draining steep pastoral land in New Zealand exhibit high levels of fecal contamination at a range of flows. This contamination is attributed to both the transport of bacteria into a wetland from the surrounding catchment and the direct excretion of fecal material onto wetlands by grazing cattle. E. coli concentrations observed at low to moderate flow at 20 sites varied between 0.5 x 10(1) and 2 x 10(4) most probable number (MPN) 100 mL(-1). High flow concentrations measured at two wetlands ranged up to 6 x 10(6) MPN 100 mL(-1) and yielded storm period bacterial loads of between 1 x 10(6) and 3 x 10(10) MPN per event. Given the disproportionately large fraction of surface and subsurface flow from the catchment that passes through the wetlands, these yields represent a large proportion of the total loss of bacteria from steep grazed hillsides, across a range of storm events. Cattle are attracted to the smaller, shallower wetlands for grazing in both summer and winter. Excluding stock from shallow wetlands may therefore yield improvements in bacterial water quality, although accurately quantifying this improvement is difficult without long-term studies. Cattle are not attracted to larger, deeper wetlands, presumably for fear of entrapment, and fencing them is unlikely to realize significant improvements in bacterial water quality. A statistical model incorporating solar radiation and flow explains 87% of the variance in E. coli concentrations across five monitored rainfall events. A positive correlation was found between solar radiation and E. coli concentration. The study was conducted in winter when clear, sunny days are relatively cold. Solar radiation on these days appears to be too weak to promote die-off but the colder temperatures aid survival.  相似文献   

3.
The occurrence of broad-host-range (BHR) plasmid amplicons belonging to incompatibility (Inc) groups IncA/C, IncN, IncP, and IncW in two wastewater treatment plant (WWTP) effluents and effluent-receiving streams in Northwest Arkansas, Mud Creek and Spring Creek, was determined. Community DNA captured on filter membranes and plasmid DNA extracted from antibiotic-resistant Escherichia coli isolated from Mud Creek was used for polymerase chain reaction at amplification of partial gene sequences specific to BHR plasmids. IncP plasmid amplicons were detected in effluent and downstream sites in both streams, while IncN and IncW plasmid amplicons were detected in Spring Creek in effluent and downstream but not upstream. IncA/C plasmid amplicons, in contrast, were detected at all sites, including upstream in most samples in Spring Creek and in one sample from Mud Creek. One IncP and two IncN were the only BHR plasmid amplicons found in 85 screened antibiotic-resistant E. coli isolates, and were detected only in isolates from effluent and downstream samples. Broad-host-range plasmids frequently carry antibiotic-resistance genes and can facilitate horizontal transfer of those genes. While BHR plasmids have been detected in WWTPs, WWTPs do not target these genetic elements for destruction. This study indicates that BHR plasmids are in WWTP effluent and are introducing BHR plasmids into streams. Additionally, species other than E. coli may be better targets as indicator bacteria for future studies of the impact of treated effluent on environmental dissemination of BHR plasmids.  相似文献   

4.
Abstract: Fecal coliform (FC) bacteria in coastal waters impair the use of these waters for shellfish harvesting and recreation. This study was designed to quantify and compare FC levels and export in two coastal watersheds with different land uses. Continuous monitoring of rainfall and discharge at three sites in the Jumping Run Creek watershed and one site in the Pettiford Creek watershed were conducted during a 4.5‐year period. Primary land use in the drainage area of one of the three Jumping Run Creek sites is low density industrial, while the other two are residential. Land use in the Pettiford Creek watershed is managed national forest. Nonstorm or base‐flow grab and flow‐proportional storm‐event samples were collected and analyzed for turbidity, conductivity, suspended sediment, nitrogen, phosphorus, and FC. Geometric mean FC levels for the Jumping Run Creek monitoring sites ranged from 593 to 2,096 mpn/100 ml, while the mean level at the Pettiford Creek site was 191 mpn/100 ml. Levels of most other parameters were greater in storm discharge from the Jumping Run Creek sites as compared to Pettiford Creek indicating that pollutant export from a watershed increases with development. Statistical analysis of the monitoring data suggested that FC levels in stormwater samples consistently increased with storm rainfall, but were not consistently correlated with any other parameter, including total suspended solids. Multivariate analysis indicated that the weekly FC export for each of the four sites was lowest during the December‐February quarter. Export was highest during the spring and summer at the Jumping Run Creek sites, while for the Pettiford Creek site, FC export was highest during September‐November. The cause of the seasonal variability was unknown but was thought to be associated with human activity in the watersheds.  相似文献   

5.
Abstract: Escherichia coli was used as a bacterial tracer for the development, calibration, and validation of a watershed scale fate and transport model to be extended to a suite of reference pathogens (Cryptosporidium, Giardia, Campylobacter, E. coli O157:H7). E. coli densities in water and sediments from the Blackstone River Watershed, Massachusetts, were measured at three sites for a total of five wet weather events and three dry weather events covering three seasons. The confirmed E. coli strains were identified by ribotyping for tracking the sources of E. coli and for determining the association of downstream E. coli isolates with isolates from upstream sediments. A large number of downstream samples were associated with upstream sediment sources of E. coli. E. coli densities ranged from 71 to 6,401 MPN/100 ml in water samples and from 2 to 335 MPN/g in sediments. Pearson correlation analysis revealed significant correlations between E. coli and total coliforms in water (r = 0.777, p < 0.01) and sediments (r = 0.728, p < 0.01). In addition, E. coli concentrations in water were weakly correlated with sediment particle size and sediment concentrations (r = 0.298, p < 0.01). A hydrologic model, WATFLOOD/SPL9, was used to predict the temporal and spatial variation of E. coli in the Blackstone River. The rapid rise of stream E. coli densities was more accurately predicted by the model with the inclusion of sediment resuspension, thus demonstrating the importance of the process.  相似文献   

6.
Understanding sediment Escherichia coli levels (i.e., pathogen indicators) and their contribution to the water column during resuspension is critical for predicting in‐stream E. coli levels and the potential risk to human health. The U.S. Environmental Protection Agency's current water quality testing strategies, however, rely on water borne E. coli concentrations to assess stream E. coli levels and identify impaired waters. In this work, we conducted a scenario analysis using a range of flows, sediment/water bacteria fractions, and particle sizes to which E. coli attach to assess the impact of E. coli in streambed sediments on water column E. coli levels. We used simple sediment transport theory to calculate the potential total E. coli concentrations in a stream with and without the resuspension process. Results clearly indicate that inclusion of resuspending sediment attached E. coli is necessary for watershed assessments and data on sediment attached E. coli concentrations is much needed. When neglecting the streambed sediment E. coli concentrations, the model predicted average E. coli loads of 107 Colony Forming Units (CFU)/s; however, when streambed sediment E. coli concentrations were included in the model, the predictions ranged from 1010 to 1014 CFU/s. To evaluate the predictions, E. coli data in the streambed sediment and the water column were monitored in Squaw Creek, Iowa. Comparisons between measured and predicted E. coli loads yielded an R2‐value of 0.85.  相似文献   

7.
The stability of cohesive sediment deposits during a rare storm is a critical component in the evaluation of remedial options at a contaminated sediment site. Estimating scour depths during a rare storm, and the resulting contaminant concentrations in the surficial layer of the bed, is necessary for comparing the efficacy of various remedial alternatives. Evaluation of sediment stability is accomplished using sediment transport analyses that employ quantitative procedures. Qualitative analyses or conceptual models can be useful for developing and validating quantitative analysis tools; however, qualitative techniques alone generally are insufficient for conducting defensible remedial alternative evaluations. The level of analysis used for a specific site depends on data availability, required level of accuracy, and time and budget constraints. A tier 1 analysis involves the use of approximate equations to produce order-of-magnitude estimates of scour depths during a rare storm. The second tier of this analysis scheme employs the development and application of a sediment transport model to evaluate bed stability. State-of-the-science sediment transport models have been effectively used as management tools for evaluating remedial options at several contaminated sediment sites. It should not be presumed that rare storm events cause catastrophic impacts at the site under review. Two case studies demonstrate that a rare storm is not necessarily catastrophic; significant increases in surficial bed concentrations caused by reexposure of elevated concentrations buried at depth in the bed will not necessarily occur during a rare storm. However, it is important to note that sediment stability is site-specific.  相似文献   

8.
Contamination of unfenced streams with P, sediments, and pathogenic bacteria from cattle (Bos taurus) activity may be affected by the availability of shade and alternative water sources. The objectives of this study were to evaluate water quality in two streams draining tall fescue (Festuca arundinacea Schreb.)-common bermudagrass (Cynodon dactylon L.) pastures with different shade distribution, and to quantify the effects of alternative water sources on stream water quality. For 3 yr, loads of dissolved reactive phosphorus (DRP), total phosphorus (TP), and total suspended solids (TSS) were measured during storm flow, and loads of DRP, TP, TSS, and Escherichia coli were measured every 14 d during base flow. We also used GPS collars to determine amount of time cattle spent in riparian areas. Our results showed that cattle-grazed pastures with unfenced streams contributed significant loads of DRP, TP, TSS, and E. coli to surface waters (p < 0.01). Time spent by cattle in riparian areas as well as storm flow loads of DRP, TP, and TSS were larger (p < 0.08) in the pasture with the smaller amount of nonriparian shade. Water trough availability decreased base flow loads of TSS and E. coli in both streams, and decreased time cattle spent in riparian areas in the pasture with the smaller amount of nonriparian shade (p < 0.08). Our results indicate that possible BMPs to reduce contamination from cattle-grazed pastures would be to develop or encourage nonriparian shade and to provide cattle with alternative water sources away from the stream.  相似文献   

9.
ABSTRACT: Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.  相似文献   

10.
Given known limitations of current microbial source-tracking (MST) tools, emphasis on small, simple study areas may enhance interpretations of fecal contamination sources in streams. In this study, three MST tools-Escherichia coli repetitive element polymerase chain reaction (rep-PCR), coliphage typing, and Bacteroidales 16S rDNA host-associated markers-were evaluated in a selected reach of Plum Creek in south-central Nebraska. Water-quality samples were collected from six sites. One reach was selected for MST evaluation based on observed patterns of E. coli contamination. Despite high E. coli concentrations, coliphages were detected only once among water samples, precluding their use as a MST tool in this setting. Rep-PCR classification of E. coli isolates from both water and sediment samples supported the hypothesis that cattle and wildlife were dominant sources of fecal contamination, with minor contributions by horses and humans. Conversely, neither ruminant nor human sources were detected by Bacteroidales markers in most water samples. In bed sediment, ruminant- and human-associated Bacteroidales markers were detected throughout the interval from 0 to 0.3 m, with detections independent of E. coli concentrations in the sediment. Although results by E. coli-based and Bacteroidales-based MST methods led to similar interpretations, detection of Bacteroidales markers in sediment more commonly than in water indicates that different tools to track fecal contamination (in this case, tools based on Bacteroidales DNA and E. coli isolates) may have varying relevance to the more specific goal of tracking the sources of E. coli in watersheds. This is the first report of simultaneous, toolbox approach application of a library-based and marker-based MST analyses to flowing surface water.  相似文献   

11.
12.
Two‐dimensional simulation of highly heterogeneous domains, especially those with disparate length scales, roughness conditions, and geometries, often leads to challenges such as long computation times and numerical instability. Simulation of challenging domains is often needed to guide flood management and environmental regulation agencies in operation and potential domain modifications. This work evaluates the ability of a two‐dimensional unsteady hydrodynamic model to represent long‐duration transient flows over a domain with highly heterogeneous roughness, geometric characteristics, and length scales through bed roughness representation. The domain includes 13 km of Cache Creek and the 14.5 km2 Cache Creek Settling Basin, which traps both sediment and mercury. Calibration under different bed roughness methods, validation, and modeling results of bathymetric modification scenarios are presented. The modeling approach's performance supports its application as a tool for management of similar domains, such as settling basins, leveed floodplains, and reservoirs. Accurate representation of flow dynamics can also inform environmental management that involves transport of sediments, nutrients, and heavy metals. This study found that a two‐dimensional unsteady flow model can accurately represent long‐duration transient flow in a large settling basin with highly heterogeneous characteristics without parsing of the domain or flow events simulated.  相似文献   

13.
The aim of this study was to determine the load of Escherichia coli transferred via drainage waters from drained and undrained pasture following a grazing period. Higher concentrations (ranging between 10(4) and 10(3) colony forming units [CFU] g(-1)) of E. coli persisted in soil for up to 60 d beyond the point where cattle were removed from the plots, but these eventually declined in the early months of spring to concentrations less than 10(2) CFU g(-1). The decline reflects the combined effect of cell depletion from the soil store through both wash-out and die-off of E. coli. No difference (P > 0.05) was observed in E. coli loads exported from drained and undrained plots. Similarly, no difference (P > 0.05) was observed in E. coli concentrations in drainage waters of mole drain flow and overland plus subsurface interflow. Intermittent periods of elevated discharge associated with storm events mobilized E. coli at higher concentrations (e.g., in excess of 400 CFU mL(-1)) than observed during low flow conditions (often <25 CFU mL(-1)). The combination of high discharge and cell concentrations resulted in the export of E. coli loads from drained and undrained plots exceeding 10(6) CFU L(-1) s(-1). The results highlight the potential for drained land to export E. coli loads comparable with those transferred from undrained pasture.  相似文献   

14.
Turton, Donald J., Michael D. Smolen, and Elaine Stebler, 2009. Effectiveness of BMPs in Reducing Sediment From Unpaved Roads in the Stillwater Creek, Oklahoma Watershed. Journal of the American Water Resources Association (JAWRA) 45(6):1343‐1351. Abstract: Erosion from rural unpaved roads is thought to be an important source of sediment in sediment‐impaired streams in Oklahoma and other locations. However, no direct measurements of sediment yields from rural unpaved roads were previously available for Oklahoma. Four rural unpaved road segments in the Stillwater Creek Watershed were instrumented in a paired watershed design to measure sediment yields to streams before and after the installation of Best Management Practices (BMPs). One segment of each pair remained under current management to serve as a control. The second segment received BMPs after a 1‐year calibration period. One BMP consisted of widening the ditches, re‐shaping ditches and cutslopes, putting a proper crown on the road surface, and vegetating disturbed areas with grass. The other BMP consisted of creating a proper crown on the road bed, applying a geo‐synthetic fabric to the road bed and surfacing with 127 mm of crusher run gravel containing 12‐15% fines to serve as a binder. Road segment sediment yields for individual storms varied, depending on factors such as rainfall amount and intensity. During the pre‐BMP year, storm sediment yields ranged from 0 to 4.3 Mg on one pair of segments and from 0 to 2.8 Mg on the other. The storm sediment yields and annual yields were in the same order of magnitude as sediment yields from unpaved rural or forest roads reported in other studies. Sediment yields were significantly reduced on both segments by the installation of BMPs, approximately 80% on one segment pair and 20% on the other. The average sediment yield (across the four segments) for the pre‐BMP year was 138 Mg/ha or 120 Mg/km of road. By extrapolating these average yields across the 479 km of unpaved roads in the Stillwater Creek Watershed and comparing it to estimated sediment yields for other land uses obtained from other sources, we conclude that unpaved roads may contribute up to 35% of the total sediment load to Stillwater Creek.  相似文献   

15.
This study analyzed the occurrence of Escherichia coli in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region using synoptic monitoring (samples taken throughout the watershed system) during base-flow conditions. The objective of the study was to evaluate the occurrence of E. coli during base-flow conditions for several months at seven different main channel and nine different tributary sampling sites in the Stock Creek watershed, a 49.3-km(2) basin located in Knoxville, TN. Escherichia coli densities were measured using the Colilert (Defined Substrate Technology) method. The instantaneous loads for E. coli were determined from measured flow rates and E. coli densities, with the highest loading rates observed in the late fall. The study indicated a strong correlation between E. coli load rate (colony-forming units [CFU]/d), 7-d antecedent precipitation, and turbidity. Water quality data, however, also exhibited a spatial dependency; for example, the E. coli load rate was better correlated with turbidity in the slower draining basin tailwater sampling sites than in the faster draining upstream headwater sampling sites. In the headwater sites, the E. coli load rate was better correlated with 7-d antecedent precipitation than turbidity.  相似文献   

16.
Use of the zebra mussel (Dreissena polymorpha) as an indicator of previously elevated bacteria concentrations in a watershed was examined. The ability of the zebra mussel to accumulate and purge Escherichia coli over several days was investigated in both laboratory and field experiments. In laboratory experiments, periodic enumeration of E. coli in mussels that had been exposed to a dilute solution of raw sewage demonstrated that (i) maximum concentrations of E. coli are reached within a few hours of exposure to sewage, (ii) the tissue concentration attained is higher than the concentration in the ambient water, and (iii) the E. coli concentrations take several days to return to preexposure concentrations when mussels are subsequently placed in sterile water. In field experiments conducted in southeast Michigan in the Clinton River watershed, brief increases in E. coli concentrations in the water were accompanied by increases in mussel concentrations of E. coli that lasted 2 or 3 d. The ability of mussels to retain and to concentrate E. coli made it possible to detect E. coli in the environment under conditions that conventional monitoring may often miss. Sampling caged mussels in a river and its tributaries may enable watershed managers to reduce the sampling frequency normally required to identify critical E. coli sources, thereby providing a more cost-effective river monitoring strategy for bacterial contamination.  相似文献   

17.
Sediments impounded within flood control reservoirs are potentially important archives of environmental and geomorphic processes occurring within drainage basins. The concentrations of select sediment-associated trace elements were assessed within the impoundment of Grenada Lake, a relatively large flood control reservoir in Mississippi with a history of contaminant bioaccumulation in fish. The post-construction sediments (after 1954) are discriminated from the pre-construction sediments (before 1954) based on depth variations in sediment texture and 137Cs emissions. The concentrations of select trace elements of the post-1954 sediments all are statistically greater than the pre-1954 sediments, and these same sediments also are enriched in clay. Once these concentrations are normalized by clay content, all trace elements in the post-1954 sediments are lower in concentration than the pre-1954 normalized sediments. Moreover, the trace elements when normalized by clay or Al content show virtually no change vertically (over time) within the reservoir impoundment. This suggests that the sources of these sediment-associated trace elements within Grenada Lake, whether natural or anthropogenic, have not changed appreciably over the lifespan of the reservoir and that the degradation of sedimentologic and ecologic indices within the lake are due to the sequestration of clay or clay-sized materials.  相似文献   

18.
In this study, we characterize the greatest sediment loading events by their sediment delivery behavior; dominant climate, watershed, and antecedent conditions; and their seasonal distribution for rural and urban land uses. The study area is Paradise Creek Watershed, a mixed land use watershed in northern Idaho dominated by saturation excess processes in the upstream rural area and infiltration excess in the downstream urban area. We analyzed 12 years of continuous streamflow, precipitation, and watershed data at two monitoring stations. We identified 137 sediment loading events in the upstream rural section of the watershed and 191 events in the downstream urban section. During the majority of these events conditions were transport limited and the sediment flush occurred early in the event, generally in the first 20% of elapsed event time. Statistical analysis including two dozen explanatory variables showed peak discharge, event duration, and antecedent baseflow explained most of the variation in event sediment load at both stations and for the watershed as a whole (R2 = 0.73‐0.78). In the rural area, saturated soils combined with spring snowmelt in March led to the greatest loading events. The urban area load contribution peaked in January, which could be a re‐suspension of streambed sediments from the previous water year. Throughout the study period, one event contributed, on average, 33% of the annual sediment load but only accounted for 2% of the time in a year.  相似文献   

19.
ABSTRACT: A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed stream-flow during the entire simulation period was 13.36 × 106 m3 and the simulated streamflow volume was 13.82 × 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.  相似文献   

20.
The transport of bedload and suspended sediments and particulate organic matter was evaluated in Huntington Creek, Utah, during a controlled release of water from Electric Lake Reservoir from August 7–10, 1979. Effects of the release on channel geometry and riffle composition also were assessed. Bedload transport rates increased from zero to 1,650 and 1,500 kg/hr at two cross sections as discharge was increased from 0.4 to 4.9 m3/s; transport rates then decreased erratically as discharge was held constant. Cross section measurements and sediment size analysis indicate that flows were insufficient to transport riffle sediments. Rapid increases in the transport rates of suspended sediments and particulate organic matter also occurred during rising discharge and again decayed when discharge became constant. Suspended sediment concentrations for samples obtained with an automatic pumping sampler were generally less than those found for samples obtained with a DH-48 sampler. Biological measurements still are needed to determine if such a release can improve fisheries habitat by removing fine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号