首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
多环芳烃标准样品的研制   总被引:4,自引:1,他引:4       下载免费PDF全文
通过对6种多环芳烃(芴、菲、荧蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[ghi])标准样品的研制,系统地介绍了液体介质标准样品的研究、制备、均匀性检验、稳定性检验、定值及数理统计的方法。   相似文献   

2.
介绍了一种研制大气SO2(片剂)标准样品的新方法,重点论述了研究过程中对样品进行的均匀性、稳定性检验和定值。研究结果表明,样品均匀性良好、定值可靠,稳定期达3a以上。该标准样品已广泛应用于我国环境监测系统,并被批准为国家环境标准样品   相似文献   

3.
张蕊 《环境科学与管理》2018,(2):139-142,161
研制介质膜干涉滤光片标准物质,包含3片不同标称值波长的滤光片,厚度为(2~3)mm,根据光谱中性金属膜的材质不同其峰值波长称值大约450 nm、550 nm、670 nm,用以检测光谱光度计波长示值误差和重复性。滤光片采用分光光度计方法进行定值,溯源至自然基准低压石英汞灯。根据(JJF 1343-2012)《标准物质定值的通用原则及统计学原理》和(JJG 812-93)《干涉滤光片检定规程》通过对滤光片进行均匀性检验、稳定性考核和介质膜干涉滤光片波长测量的不确定度评定,完成介质膜干涉滤光片标准物质的研究工作。  相似文献   

4.
潘本锋  汪巍  李莉娜 《环境工程》2015,33(5):109-113
随着空气质量新标准的实施,从2013年开始我国部分城市先期开展了PM2.5的例行监测,从中选取不同区域的典型城市,分析了PM2.5在环境中的分布情况。分析结果表明:典型城市PM2.5日均值相对标准偏差(RSD)范围为13%~26%,平均值为18%;我国南方城市PM2.5空间分布均匀性优于北方城市,北方城市冬、春季节PM2.5分布的均匀性较差,南方城市夏季PM2.5分布的均匀性较差;PM2.5的空间分布均匀程度与PM10接近,但明显优于其他气态污染物。综合分析认为,目前我国国家监测网内PM2.5监测点位的代表性能够满足城市空气质量监测与评价工作需要。  相似文献   

5.
本研究对太原市采暖期PM2.5中多环芳烃(PAHs)的污染水平、组成特征、健康风险以及来源进行了分析。结果表明,太原市采暖期PM2.5的日均浓度水平为70.7~274.2μg/m3,90%的样品超过了我国《环境空气质量标准》(GB 3095-2012)中PM2.5的二级标准限值(75μg/m3)。PM2.5中16种PAHs的浓度水平为282.7~1 398.6ng/m3,平均值为915.7ng/m3。荧蒽(Fla)是浓度最高的单体,占PAHs总浓度的20.4%,其次是芘(Pry)和菲(Phe),分别占14.5%和13.2%。不同环数的PAHs质量浓度为4环5~6环2~3环。以苯并(a)芘(Bap)为参照对象的昼夜毒性当量浓度Bapeq分别为75.5和100.0ng/m3,高于我国和WHO对Bap的规定值(分别为2.5和1ng/m3),对人体健康存在潜在危害。根据PAHs环数分布及特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的生物质燃烧和少部分石油燃烧。  相似文献   

6.
对北京若干居住区进行了持续监测,并收集了北京环境监测中心、北京市气象台的相关数据并进行了分析,指出北京这一特大城市在PM2.5分布中存在着多维度上的不均匀现象。这一不均匀现象表现为:(1)在多种尺度下其质量浓度分布不均匀;(2)全年时段内PM2.5已成为首要污染物;(3)霾主要发生在微静风天气中;(4)不同风向条件下,均存在着明显的最高值、最低值的监测点。据此得出,北京这一特大城市的PM2.5分布具有以下特征:(1)PM2.5主要来源于城市内部;(2)风环境等对PM2.5分布具有重要作用;(3)城市格局对PM2.5分布具有重要影响。  相似文献   

7.
采用二极管阵列检测器(PDA),建立了加速溶剂萃取(ASE)-超高效液相色谱(UPLC)定性定量测定大气PM2.5中16种多环芳烃(PAHs)的方法。通过优化预处理过程及柱温、梯度洗脱程序等一系列色谱分离条件,实现了14 min内16种PAHs的完全基线分离。优化条件下测定PAHs线性关系好,检出限为0.50~2.0μg/L,样品加标回收率为75%~98%,相对标准偏差为0.54%~8.97%。结果表明,该方法用于测定大气PM2.5中PAHs的含量,具有检出限低、灵敏度高、重复性好等优点,是一个较为可靠的检测方法。  相似文献   

8.
在海口市布设2个采样点,于2014年秋冬季节采集大气PM_(2.5)样品,采用超声萃取和GC/MS分析了PM_(2.5)中优先控制的16种PAHs,探讨了其含量分布特征,对PAHs健康风险进行了评价,并运用比值法定性解析其可能来源。研究结果表明:2个采样点秋冬季节PAHs平均质量浓度为4.825、6.771 ng/m3,其中以Pyr浓度最高;PM_(2.5)中以分子量大的化合物为主,其中4环PAHs所占比率最高,达到38.9%以上;秋季和冬季BEQ日均值分别为0.577、0.691 ng/m~3,均低于国内外BaP限值标准;比值法分析PM_(2.5)中PAHs来源,最主要的贡献源为机动排放车,同时兼有木材燃烧源的特征。  相似文献   

9.
2011年1-12月在新疆科学院设置采样点,采集大气可吸入颗粒物。并利用气相色谱-质谱联用仪(GC-MS)对可吸入颗粒物中的多环芳烃进行了定量分析。采样期间细粒子(PM2.5)和粗粒子(PM2.5-10)的质量浓度范围分别为10.30~559.00μg/m3和16.70~218.80μg/m3;美国EPA优控的16种多环芳烃中由于萘(Nap)、苊烯(Acp)和苊(Acey)的浓度低于检测线未被检出之外,其余13种化合物均被检出。在PM2.5和PM2.5-10中这13种多环芳烃的总浓度范围分别为:1.18~2 504.72 ng/m3和1.14~519.87 ng/m3;采用SPSS软件对颗粒物浓度与气象参数之间相关性分析表明,颗粒物浓度与温度及风速在P0.05水平上显著负相关,与相对湿度在P0.01水平上显著正相关;采用多元线性回归对PM2.5-ΣPAHs、PM2.5-10-ΣPAHs浓度与气象参数之间建立预测模型,决定系数R2分别为0.689、0.557。  相似文献   

10.
孙茜 《海洋环境科学》2006,25(3):93-95,100
介绍了[艹屈]标准物质的研究、制备方法,进行了均匀性检验、稳定性检验,统计计算了检验结果。结果表明,该标准物质的均匀性和稳定性良好,在5a内有效,标准物质符合国家标准,可用于海洋环境监测。  相似文献   

11.
水泥窑PM2.5排放特性及其PAHs风险分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用荷电低压颗粒物撞击器(ELPI)、便携式PM2.5采样器和稀释系统,对国内3家新型干法水泥生产厂(5条生产线)的水泥窑(包括窑头和窑尾)进行现场采样,分析水泥窑排放PM2.5的质量浓度、粒数浓度及其中的多环芳烃(PAHs)浓度,对呼吸致癌风险进行评价.结果表明:从粒数浓度分析,PM2.5中70%以上为PM0.33,这部分颗粒物主要是由气化凝结形成的.各采样点排放的PAHs主要以二环和三环的低环PAHs为主.第3个水泥厂窑头排放的PAHs含量最高,而且苯并[a]芘(BaP)超过国家所规定的8ng/m3标准限值,同时其呼吸致癌风险水平为4.46×10-4,高于可接受致癌风险水平的上限,需要有效处理.  相似文献   

12.
昆明城区大气PM2.5中PAHs的污染特征及来源分析   总被引:3,自引:0,他引:3  
2013年4月至2014年1月期间,在昆明城区3个采样点采集了大气细颗粒物(PM2.5)样品,利用气相色谱-质谱联用仪对PM2.5载带的16种PAHs进行定量分析.结果表明:工业区(金鼎山)、交通密集区(东风东路)、清洁对照点(西山森林公园)PM2.5上PAHs平均含量分别为40.67,22.64,22.07ng/m3.通过常规气象因素及气团后向轨迹模型分析发现,起源于曲靖地区的污染气团传输及昆明大气高压形成的下沉气流是导致昆明PAHs浓度上升的重要原因.金鼎山、东风东路、西山森林公园的BaPeq浓度分别为6.28,4.00,2.94ng/m3,均高于国家环境空气质量二级标准(2.5ng/m3).源解析结果显示,工业区(金鼎山)和交通密集区(东风东路)的PAHs污染来源一致,主要来自机动车排放,其贡献率分别为50.80%和40.20%,其次为燃煤排放,贡献率为35.55%和39.23%,再次为生物质燃烧,贡献率为7.30%和7.98%;作为清洁对照点的西山森林公园的PAHs则来自汽车尾气排放(81.84%)和生物质燃烧排放(9.73%).  相似文献   

13.
武汉市洪山区春季PM2.5浓度及多环芳烃组成特征   总被引:2,自引:0,他引:2  
分析了武汉市洪山区2014年春季PM2.5的浓度,并利用气相色谱/质谱(GC/MS)测定了多环芳烃(PAHs)的组成.结果表明,PM2.5的质量浓度为47.99~195.87μg/m3,平均质量浓度为(101.34±32.49)μg/m3,超标天数占总监测天数的81.82%;PM2.5质量浓度与各气象要素间的相关性不显著.PM2.5中PAHs日均浓度变化范围为8.44~34.45ng/m3,平均浓度为21.48±7.03ng/m3,其中4环PAHs的含量最高,达到11.72ng/m3,占总PAHs浓度的54.56%,结合典型污染来源中PAHs的特征比值和数学统计中主成分分析法,判断出其主要污染来源为车辆排放、燃烧源和燃煤源;PAHs日均总毒性当量(∑BaPeq)浓度范围为1.10~5.46ng/m3,平均值为2.99ng/m3,日均超标率达到60.61%.  相似文献   

14.
PM2.5作为可吸入人体的细颗粒物在大气中停留时间长、输送距离远,对人体健康和大气环境质量影响非常大.选取鞍山市城区7个点位分别采集了4个季节的大气细颗粒物PM2.5样品,通过对其中多环芳烃PAHs的监测,采用BaP当量致毒系数TEF,分析了鞍山市大气PM2.5中PAHs毒性当量随季节的分布特征.研究表明,鞍山大气PM25中PAHs含量的季节分布趋势为:冬季>秋季>春季>夏季.工业区及工业区周边BaP毒性当量浓度要远高于居住区和对照点.  相似文献   

15.
使用中流量颗粒物采样器采集台州市2015—2016年大气PM_(2.5)样品,利用气相色谱-质谱仪对样品中16种多环芳烃(PAHs)进行分析,研究PAHs的污染特征及可能来源。结果显示:PAHs总浓度为(20.69±4.84)ng/m3,浓度季节变化大小顺序依次为冬季>春季>秋季>夏季,空间变化为商住区>工业区>背景点。PM_(2.5)中PAHs以高环为主(≥4环),占86%。不同季节商住区和工业区PAHs(4环)含量均略高于背景点,PAHs(5~6环)的含量商住区略高于工业区和背景点。PAHs环数分布和比值法结果表明台州市大气PM_(2.5)中PAHs的主要来源是机动车尾气和燃煤。成年人和儿童的终生超额致癌风险(ILCR)分别为8.02×10-7和5.61×10-7,表明台州市PM_(2.5)中PAHs对人体健康影响在可接受范围内。  相似文献   

16.
以和田市2020年夏季PM_(2.5)、PM_(10)为对象,文章分析测定其中14种元素含量,通过富集因子、地质积累指数、内梅罗污染指数和潜在生态风险评价4种方法评价元素污染特征。利用美国EPA健康风险评价模型对其中重金属元素进行风险评估。结果显示:(1)采样期间PM_(2.5)、PM_(10)浓度超标明显,超标天数均超过80%。(2)沙尘天气颗粒物浓度及元素总质量浓度大于非沙尘天气,地壳元素浓度特征为PM_(10)高于PM_(2.5),沙尘天气高于非沙尘天气。(3)14种元素共占颗粒物含量的18.20%,地壳元素占总元素的平均比例为98.59%。(4)颗粒物浓度、地壳元素、Mn之间始终为极显著正相关关系。较其他元素言,Zn、Pb与其他元素及颗粒物的相关性较弱。(5)地壳元素及Mn在4种评价方法中均未出现超标现象。Zn、Cd、As来自人为源。地质积累指数和生态风险评价结果相似,均为Mn、Cr存在轻微或无污染现象,As、Cd污染较严重,内梅罗污染指数则显示,Mn、Pb、Cd无污染,Cr污染较严重。(6)Mn、Cr对于不同群体均存在非致癌与致癌风险,As仅在沙尘天气对于成年人存在致癌风险。  相似文献   

17.
18.
灰霾与PM2.5     
邵敏 《世界环境》2012,(1):12-13
经过北京奥运会、上海世博会和广州亚运会,空气质量保障的成果让老百姓亲身体验了"蓝天白云"的益处.进入秋冬转换季节,全国连续发生的雾霾事件,又使原本陌生的PM2.5成为了几乎家喻户晓的热点.以PM2.5为标志,中国大气污染的防治将进入全新的历史阶段.而有效地改善大气能见度,需要认识污染排放与大气PM2.5浓度以及PM2.5与大气能见度之间的关系.从科学上,这两个关系都是十分复杂的非线性关系,这藏意味着大气灰霾的治理将是一个艰辛的历程.  相似文献   

19.
南京市大气中PM10、PM2.5日污染特征   总被引:16,自引:0,他引:16  
于2001年秋季(11月)、夏季(8月)对南京市五大典型功能区的大气颗粒物(PMl0、PM2.5)进行了监测研究。结果发现,南京市颗粒物污染严重,PMl0、PM2.5的超标率分别达到了65%、85%;颗粒物浓度季节变化大,11月污染物浓度明显大于8月,PMl0、PM2.5分别相差l68.44μg/m^3、190.1μg/m^3;PMl0中PM2.5比重较大,大约为75.9%,对人体健康潜在危害大。  相似文献   

20.
2010年1月上海市政府颁布了《崇明生态岛建设纲要(2010-2020)》,本文从2013年9月1日至2014年8月31日运用颗粒物采集仪器于森林公园、绿华、现代农业园区、城桥四个空气自动监测点位监测PM10和PM2.5,分析PM10和PM2.5的浓度与风向的关系得出PM10和PM2.5污染与江对面的吴淞工业区、宝钢、石洞口电厂、罗店工业区乃至江苏太仓沿江工业区的污染物排放密切相关,在相当大的程度上主要是来自于他们的贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号