首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了小隐孢子虫卵囊的特点及其对人体的危害,分析了pH、混凝剂种类与投加量、电导率和天然有机物含量等对小隐孢子虫卵囊的Zeta电位的影响,总结了混凝-沉淀-过滤和直接过滤对小隐孢子虫卵囊的去除效果,探讨了水温、水质、混凝剂种类与投加量、滤料层组成和滤速等对去除效果的影响.  相似文献   

2.
介绍了小隐孢子虫卵囊的特点及其对人体的危害,分析了pH、混凝剂种类与投加量、电导率和天然有机物含量等对小隐孢子虫卵囊的Zeta电位的影响,总结了混凝-沉淀-过滤和直接过滤对小隐孢子虫卵囊的去除效果,探讨了水温、水质、混凝剂种类与投加量、滤料层组成和滤速等对去除效果的影响。  相似文献   

3.
The application of immunofluorescent labeling using quantum dots for detection of inactivated Cryptosporidium parvum oocysts in spiked water samples (reservoir water, treated wastewater effluent, permeate of a membrane bioreactor, and tap water) provided more consistent results compared with the organic fluorophores label. The varying degree of particles present in the different water samples (with turbidity ranging from 0.2 to 6.1 NTU) in nonconcentrated water samples had insignificant interference on the labeled counts (2-sample t-tests, p > 0.236) using the quantum dot label, while the quantum dot label provided an advantage of approximately 50% lower interference in concentrated water samples compared with the organic fluorophores label.  相似文献   

4.
Das KC  Xia K 《Chemosphere》2008,70(5):761-768
4-Nonylphenol, a degradation intermediate of commercial surfactant and known endocrine disruptor, has been frequently detected at levels up to several thousand microgl(-1) in surface waters and up to several hundred mgkg(-1) (dry weight) in soil and sediment samples. Large quantities of 4-NP can be quickly sorbed by the organic rich solid phase during wastewater treatment and are concentrated in biosolids, a possible major source for 4-NP in the environment. Microbial transformation in culture studies followed different mechanisms for different 4-NP isomers, which have different estrogenic activity. Composting is a process of solid matrix transformation where biological activity is enhanced by process control. This approach has been used successfully in remediation of contaminated soils and sludges. In this study, the transformation kinetics of 4-NP and its isomers were characterized during biosolids composting. Five distinctive 4-NP isomer groups with structures relative to alpha- and beta-carbons of the alkyl chain were identified in biosolids. Composting biosolids mixed with wood shaving at a dry weight percentage ratio of 43:57 (C:N ratio of 65:1) removed 80% of the total 4-NP within two weeks. At this biosolids/wood shaving ratio (B:WS), the transformation of total 4-NP and its isomers followed second-order kinetic. Higher B:WS ratios yielded significantly slower 4-NP transformation which followed first-order kinetic. Isomers with alpha-methyl-alpha-propyl structure transformed significantly slower than those with less branched tertiary alpha-carbon and those with secondary alpha-carbon, suggesting isomer-specific degradation of 4-NP during biosolids composting.  相似文献   

5.
Lomonte C  Gregory D  Baker AJ  Kolev SD 《Chemosphere》2008,72(10):1420-1424
The re-use of biosolids is becoming increasingly popular for land applications. However, biosolids may contain elevated levels of metals and metalloids (including mercury) relative to background environmental concentrations. Consequently, reliable mercury analysis is important to allow classification of biosolids and to determine appropriate options for beneficial uses. This paper reports on a comparative study of 12 hotplate wet digestion methods for their suitability for the determination of mercury in biosolids. The methods were applied to mercury biosolids samples from four localities of two different sewage treatment plants in the State of Victoria, Australia. Samples were also spiked with methylmercury chloride and mercury sulphide to evaluate the Hg recovery in each hotplate digestion method. Aqua regia (HCl:HNO(3)=3:1), reverse aqua regia (HCl:HNO(3)=1:3), nitric, hydrochloric, sulphuric acid and their combinations with or without hydrogen peroxide were studied as wet digestion solutions. The method providing the best mercury recoveries was optimized. Under optimal conditions the corresponding analytical procedure consisted of 1h pre-digestion of 0.4 g biosolids sample with 10 ml reverse aqua regia with temperature increasing to 110 degrees C and 3h digestion at this temperature. In the last 10 min of the digestion step, 2 ml hydrogen peroxide were added to ensure complete decomposition of all mercury containing compounds. After filtering and dilution with deionised water (1:10), the concentration of mercury was determined by cold vapour atomic absorption spectrometry. It is expected, that the wet acid digestion method developed in this study will be also applicable to biosolids from other sewage treatment plants and to other types of solid mercury samples with elevated levels of organic matter.  相似文献   

6.
Eight types of Class A biosolids were tested for fecal coliform (FC) reactivation and/or regrowth at 20, 35, and 50 degrees C for 21 days. Growth of FC did not occur at 20 or 50 degrees C, but it was observed in two samples incubated at 35 degrees C after a lag period of 48 hours. In undigested biosolids, final FC concentration exceeded 10(4) MPN/g, whereas in thermophilically digested biosolids, the final FC concentration remained below 10(3) MPN/g, as FC regrowth may have been affected by the presence of the anaerobic bacterial consortium responsible for the digestion process. Fecal-coliform reactivation and regrowth within treatment plant operations seem unlikely but can occur in land application of biosolids.  相似文献   

7.
Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems.  相似文献   

8.
Anderson Td  MacRae JD 《Chemosphere》2006,62(7):1153-1160
Polybrominated diphenyl ethers (PBDEs) are one class of flame retardants commonly used in textiles, foams and plastics. They are similar in behavior to the well-studied polychlorinated biphenyls and growing evidence suggests they are widespread global environmental pollutants that are capable of bioaccumulation. Fish tissue samples were collected from sites along the Penobscot River in central Maine. The total concentration of tetra- to hepta-PBDEs in these samples were calculated and generally increased from upstream to downstream locations ranging from 800 to 1810 ng/g lipid at the northernmost site to 5750-29000 ng/g at the downstream sampling site. BDE-47, 99 and 100 were the predominant congeners found in the fish tissue. Wastewater treatment plants (WWTPs) are one of the potential sources of these compounds to the environment through effluent discharge and landspreading of biosolids. Influent, effluent, activated sludge and dewatered biosolids were collected and analyzed for PBDE congeners from a WWTP at Orono, Maine. PBDE congeners were detectable in effluent samples at concentrations from 0.31 to 0.90 microg/l, in the activated sludge at 1.32-3.8 microg/l and in the influent at 4.2-4.3 microg/l, but the majority of the material was concentrated in the biosolids. Total concentration in the biosolids was 2320-3530 microg/kg dry weight.  相似文献   

9.
Tse H  Comba M  Alaee M 《Chemosphere》2004,54(1):41-47
A procedure for the determination of 13 organophosphate insecticides (OPs) in water, sediment and biota at low ppb levels is described. Samples were extracted with dichloromethane or acetone/hexane and cleaned up with micro-column silica gel chromatography. Measurements were made by dual capillary column gas chromatography using both nitrogen-phosphorus (NPD) and electron capture (ECD) detection. Recoveries from fortified water samples ranged from 76% to 102% for all sample types. Practical detection limits ranged between 0.003 and 0.029 microg/l in natural water samples, 0.0004-0.005 microg/g w.w. for sediments, and 0.001-0.005 microg/g w.w for biota using the NPD and ECD method. Losses in sediments were experienced when sulphur was removed. Precision and accuracy were not affected in sediment samples where sulphur was not removed.  相似文献   

10.
The presence of infectious protozoan pathogens in reclaimed water may present an unacceptable health risk. This study was designed similar to a study reported by Garcia et al. (2002), which detected no infectious Giardia cysts in the final effluent of a tertiary treatment facility as determined by animal infectivity (dose 1000 cysts/gerbil). This study also included evaluation of Cryptosporidium oocyst infectivity. Infectious Giardia cysts were detected in the final effluent with 1 gerbil out of 3 inoculated with 250 cysts from reclaimed water showing signs of infection 15 days postinoculation. None of the Cryptosporidium oocysts concentrated from the reclaimed water samples appeared to be infectious.  相似文献   

11.
Sediment and mysids from the Scheldt estuary, one of the largest and most polluted estuaries in Western Europe, were analyzed for a number of contaminants that have been shown to possess endocrine-disrupting activity, i.e. organotins, polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA), nonylphenol ethoxylates (NPE) and transformation products, nonylphenol (NP) and nonylphenol ether carboxylates (NPEC). In addition, in vitro estrogenic and androgenic potencies of water and sediment extracts were determined. Total organotin concentrations ranged from 84 to 348 ng/g dw in sediment and 1110 to 1370 ng/g dw in mysid. Total PBDE (excluding BDE-209) concentrations ranged from 14 to 22 ng/g dw in sediment and from 1765 to 2962 ng/g lipid in mysid. High concentrations of BDE-209 (240-1650 ng/g dw) were detected in sediment and mysid (269-600 ng/g lipid). Total HBCD concentrations in sediment and mysid were 14-71 ng/g dw and 562-727 ng/g lipid, respectively. Total NPE concentrations in sediment were 1422 ng/g dw, 1222 ng/g dw for NP and 80 ng/g dw for NPEC and ranged from 430 to 1119 ng/g dw for total NPE and from 206 to 435 ng/g dw for NP in mysid. Significant estrogenic potency, as analyzed using the yeast estrogen assay, was detected in sediment and water samples from the Scheldt estuary, but no androgenic activity was found. This study is the first to report high levels of endocrine disruptors in estuarine mysids.  相似文献   

12.
This study evaluated the use of steam explosion as a pretreatment for municipal wastewater treatment sludges and biosolids as a technique for enhancing biogas generation during anaerobic digestion. Samples of dewatered anaerobic digester effluent (biosolids) and a mixture of thickened waste activated sludge (TWAS) and biosolids were steam-exploded under differing levels of intensity in this study. The results indicate that steam explosion can solublize components of these sludge streams. Increasing the intensity of the steam-explosion pressure and temperature resulted in increased solublization. The steam-explosion pretreatment also increased the bioavailability of sludge components under anaerobic digestion conditions. Increasing the steam-explosion intensity increased the ultimate yield of methane during anaerobic digestion. Batch anaerobic digestion tests suggested that pretreatment at 300 psi was the most optimal condition for enhanced biogas generation while minimizing energy input. Semicontinuous anaerobic digestion revealed that the results that were observed in the batch tests were sustainable in prolonged operation. Semicontinuous digestion of the TWAS/biosolids mixture that was pretreated at 300 psi generated approximately 50% more biogas than the controls. Semicontinuous digestion of the pretreated biosolids resulted in a 3-fold increase in biogas compared with the controls. Based on capillary suction test results, steam-explosion pretreatment at 300 psi improved the dewaterability of the final digested sludge by 32 and 45% for the TWAS/ biosolids mixture and biosolids, respectively, compared with controls. The energy requirements of the nonoptimized steam-explosion process were substantially higher than the additional energy produced from enhanced digestion of the pretreated sludge. Substantial improvements in energy efficiency will be required to make the process viable from an energy perspective.  相似文献   

13.
Ho KC  Chow YL  Yau JT 《Chemosphere》2003,52(9):1441-1450
Currently, about 80% of drinking water in Hong Kong is abstracted from The East River (Dongjiang) that is located in the mainland side of China. Literature records and monitoring results of 2000-2001 confirmed that the lower section of the Dongjiang had been contaminated by organic and inorganic pollutants. Statistical analyses showed that the increases of total cadmium, copper and zinc in the surface layer of sediment of Hong Kong reservoirs from 1994 to 2001 were positively correlated (significant at p<0.05) with those in the surface layer of sediments of the lower Dongjiang. Recent microbiological survey revealed that pathogens such as Salmonella spp., Vibro spp., Giardia lamblia and Cryptosporidium parvum appeared occasionally in water samples of the Dongjiang and Hong Kong reservoirs. While analytical results found that currently most of the heavy metals, trace organics and microbes were removed by the drinking water treatment plants in Hong Kong, the long-term health risk of drinking water contamination should not be overlooked. The Water Supplies Department of Hong Kong is recommended to intensify its water quality monitoring program to cover pathogenic bacteria and parasites in watercourses and reservoirs.  相似文献   

14.
The concentrations and distribution of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA) were investigated in 28 sediment samples collected from Taihu Lake, Eastern China. The results showed that all three classes of compounds were detected in 28 sediment samples but that PBDEs were the main contaminants in the study area. The total PBDE concentrations ranged from 3.77 to 347 ng/g dry weight (dw) with a mean value of 72.8 ng/g dw, whereas the concentrations ranged from 0.168 to 2.66 and from 0.012 to 1.30 ng/g dw for HBCD and TBBPA, respectively. In all of the sediment samples, BDE-209 was the predominant congener, accounting for 95.9 to 98.6 % of the total PBDEs, which indicated that commercial mixtures of deca-BDEs were the main sources of PBDE contamination. Higher concentrations of PBDEs were found in samples collected from Meiliang Bay and Gonghu Bay near the inflow river, which suggested that inflow runoff might play an important role in the PBDE levels in Taihu Lake sediments.  相似文献   

15.
Uniform lime incorporation into sewage sludge is critical for biosolid lime stabilization processes. There is no class B biosolids regulation for lime incorporation. The slurry method is currently used to evaluate the pH of limed biosolids, but this method homogenizes the biosolids and potentially masks poor lime mixing. In this study, a flat-surface pH electrode was used in bench-scale and full-scale experiments to measure the pH of lime-stabilized biosolids without creating slurries. The standard deviation of 15 pH measurements at different locations in a biosolid sample was used to assess mixing quality. The bench-scale experimental study showed that well-mixed limed biosolids had consistently high pHs (approximately 12) with low standard deviations (< 0.5 pH units), whereas poorly mixed biosolids had areas with low pH (< 10) and high standard deviations (> 2 pH units). Poorly mixed biosolids exhibited rapid and marked pH reduction, as well as offensive odor generation, whereas well-mixed biosolids resisted pH reduction and offensive odor generation. The full-scale study aimed at improving lime incorporation and biosolids quality confirmed the use of a flat surface pH electrode to capture low pH regions in biosolids that were masked by the current slurry method.  相似文献   

16.
Ozone disintegration of excess biomass and application to nitrogen removal.   总被引:1,自引:0,他引:1  
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.  相似文献   

17.
Technological options for the management of biosolids   总被引:1,自引:0,他引:1  
BACKGROUND, AIM, AND SCOPE: Large quantities of biosolids (sewage sludge), which are produced from municipal wastewater treatment, are ever-increasing because of the commissioning of new treatment plants and continuous upgrades of the existing facilities. A large proportion of biosolids are currently landfilled. With increasing pressure from regulators and the general public, landfilling of biosolids is being phased out in many countries because of potential secondary pollution caused by leachate and the emission of methane, a potent greenhouse gas. Biosolids contain nutrients and energy that can be used beneficially. Significant efforts have been made recently to develop new technologies to manage biosolids and make useful products from them. In this paper, we provide a review of the technologies in biosolids management. MATERIALS AND METHODS: A survey of literature was conducted. RESULTS: At present, the most common beneficial use of biosolids is agricultural land application because of inherent fertilizer values found in biosolids. Expansion of land application, however, may be limited in the future because of more stringent regulatory requirements and public concern about food chain contamination in some countries. Perceived as a green energy source, the combustion of biosolids has received renewed interest. Anaerobic digestion is generally a more effective method than incineration for energy recovery, and digested biosolids are suitable for further beneficial use through land application. Although conventional incineration systems for biosolid management generally consume more energy than they produce because of the high moisture content in the biosolids, it is expected that more combustion systems, either monocombustion or cocombustion, will be built to cope with the increasing quantity of biosolids. DISCUSSION: Under the increasingly popular low-carbon economy policy, biosolids may be recognized as a renewable fuel and be eligible for 'carbon credits'. Because ash can be used to manufacture construction materials, combustion can provide a complete management for biosolids. A number of advanced thermal conversion technologies (e.g., supercritical water oxidation process and pyrolysis) are under development for biosolids management with a goal to generate useful products, such as higher quality fuels and recovery of phosphorus. With an ever-increasing demand for renewable energy, growing bioenergy crops and forests using biosolids as a fertilizer and soil amendment can not only contribute to the low-carbon economy but also maximize the nutrient and carbon value of the biosolids. CONCLUSIONS: Land application of biosolids achieves a complete reuse of its nutrients and organic carbon at a relatively low cost. Therefore, land application should become a preferred management option where there is available land, the quality of biosolids meet regulatory requirements, and it is socially acceptable. Intensive energy cropping and forest production using biosolids can help us meet the ever-increasing demand for renewable energy, which can eliminate the contamination potential for food sources, a common social concern about land application of biosolids. In recent years, increasing numbers of national and local governments have adopted more stringent regulations toward biosolid management. Under such a political climate, biosolids producers will have to develop multireuse strategies for biosolids to avoid being caught because a single route management practice might be under pressure at a short notice. Conventional incineration systems for biosolids management generally consume more energy than they produce and, although by-products may be used in manufacturing, this process cannot be regarded as a beneficial use of biosolids. However, biosolids are likely to become a source of renewable energy and produce 'carbon credits' under the increasingly popular, low-carbon economy policy. RECOMMENDATIONS AND PERSPECTIVES: To manage biosolids in a sustainable manner, there is a need for further research in the following areas: achieving a higher degree of public understanding and acceptance for the beneficial use of biosolids, developing cost-efficient and effective thermal conversions for direct energy recovery from biosolids, advancing technology for phosphorus recovery, and selecting or breeding crops for efficient biofuel production.  相似文献   

18.
Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri-Columbia, USA; Williamson et al., Chemosphere (This issue--PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.  相似文献   

19.
Abstract

Uniform lime incorporation into sewage sludge is critical for biosolid lime stabilization processes. There is no class B biosolids regulation for lime incorporation. The slurry method is currently used to evaluate the pH of limed biosolids, but this method homogenizes the biosolids and potentially masks poor lime mixing. In this study, a flat-surface pH electrode was used in bench-scale and full-scale experiments to measure the pH of lime-stabilized biosolids without creating slurries. The standard deviation of 15 pH measurements at different locations in a biosolid sample was used to assess mixing quality. The bench-scale experimental study showed that well-mixed limed biosolids had consistently high pHs (~12) with low standard deviations (<0.5 pH units), whereas poorly mixed biosolids had areas with low pH (<10) and high standard deviations (>2 pH units). Poorly mixed biosolids exhibited rapid and marked pH reduction, as well as offensive odor generation, whereas well-mixed biosolids resisted pH reduction and offensive odor generation. The full-scale study aimed at improving lime incorporation and biosolids quality confirmed the use of a flat surface pH electrode to capture low pH regions in biosolids that were masked by the current slurry method.  相似文献   

20.
Biosolids produced from pulp and paper mill wastewater treatment have excellent properties as soil conditioners, but often contain high levels of Escherichia coli. E. coli are commonly used as indicators of fecal contamination and health hazard; therefore, their presence in biosolids causes concern and has lead to restrictions in land-spreading. The objectives of this study were to determine the following: (1) if E. coli from the biosolids of a wastewater-free pulp and paper mill were enteric pathogens, and (2) if other waterborne microbial pathogens were present. E. coli were screened for heat-labile and heat-stable enterotoxin and verocytotoxin virulence genes using a polymerase chain reaction. Ten isolates were also screened for invasion-associated locus and invasion plasmid antigen H genes. None of the 120 isolates carried these genes. Tests for seven other microbial pathogens were negative. Effluents and biosolids from this mill do not contain common microbial pathogens and are unlikely to pose a health hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号