首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Biochar has been presented as a key technology for avoiding dangerous climate change. Pyrolysis converts part of the biomass feedstock into a gaseous fraction, which can be used for energy production. The remaining fraction is char, which is highly stable and resistant to biodegradation. When char is added to soil it increases carbon storage, reduces emissions and improves soil quality. Agricultural residues such as straw, stover and hulls are seen as the most accessible raw material. These residues could also be used as insulation in passive energy housing. Straw bale construction is a relatively simple technology, which has been applied for decades. It can store the carbon of the straw material into walls structures and in the process provides energy efficient housing. The climate benefits from improved energy efficiency depend on local conditions and energy production forms. In this study life cycle assessment was used to compare the climate impacts of biochar production and straw bale construction. On a life cycle perspective, straw bale construction results in higher net carbon storage than biochar production (3.3 t CO2eq vs. 0.9 t CO2eq/t of straw). However the result was found to be highly dependent on the assumptions on the overall energy efficiency of the replaced building stock.  相似文献   

2.
This experimental study was performed to investigate the flow characteristics in the jettisoning flow line of a liquid CO2 carrier. When a pressurized liquid CO2 container loses mechanical integrity, possibly by material or mechanical defects, the liquid inventory should be drained out rapidly for safety reasons using the so-called jettisoning process. In the course of jettisoning, the liquid CO2 undergoes two phase change stages, from liquid to liquid + vapor and from liquid + vapor to solid + vapor. Consequently, the jettisoning release rate is affected by the characteristics of these phase changes. In this study, liquid CO2 was discharged through a small tube, representing a jettisoning flow line. The temperature and pressure were measured along the tube, and the locations of the phase changes were inferred from the measured data. The experimental results showed that active nucleation occurred near the tube tip and that the phase change into solid and vapor occurred just after leaving the pipe, irrespective of the tube length in this study.  相似文献   

3.
The effects of some commonly used pH conditioners, viz., lime, banana ash, the carbonate and the bicarbonate of sodium and potassium and their binary mixture, on simultaneous removal of arsenic and iron ions from water have been studied. KHCO3 has been found to be the most suitable pH conditioner for the purpose. About 80 mg/L KHCO3 can remove both arsenate and iron ions from initial 250 μg/L and 20 mg/L to below their respective guideline values of the WHO for drinking water, retaining the final pH in the acceptable range for drinking. The simultaneous removal of arsenate and iron by the pH-conditioners decreases in the order: Lime > KHCO3 > NaHCO3 > K2CO3 > Na2CO3 > ash. However, lime requires post-treatment correction of highly alkaline pH. The arsenate ion is removed predominantly through goethite or ferrihydrite in the presence of the bicarbonates and through ferric hydroxide in the presence of the more alkaline pH-conditioners. KHCO3 is more advantageous over the more basic substances including NaHCO3, because with it, one not only needs the smallest dose but also can avoid careful adjustment of the dose for regulating the initial and the final pH. The paper clearly demonstrates the potential of KHCO3 to substitute the currently used pH-conditioners, viz., ash, lime and NaHCO3 for simultaneous removal of arsenate and iron ions.  相似文献   

4.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

5.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

6.
An air-recirculated stripping involved two processes and did not require any pretreatment. First, stripping CO2 decreased the buffer capacity of the anaerobic digestate, thereby reducing the amount of lime used to achieve a high pH. Second, lime was added to increase pH and remove ammonia from the anaerobic digestate of pig manure. pH increased from 8.03 to 8.86 by stripping CO2 in the first process (gas-to-liquid ratio = 180) and further reached 12.38 in the second process (gas-to-liquid ratio = 300). During process optimization, the maximum ammonia removal efficiency reached 96.78% with a lime dose of 22.13 g. The value was close to 98.25%, which was the optimal result predicted by response surface methodology using the software Design-Expert 8.05b. All these results indicated that air-recirculated stripping coupled with absorption was a promising technology for the removal and recovery of nitrogen in the anaerobic digestate of pig manure.  相似文献   

7.
A biotrickling filter packed with coal slag as packing medium was continuously used for more than 9 months under high ammonia loading rates of up to 140 g/m3/h. Nitrogen mass balance and microbial community analysis were conducted to evaluate the inhibitory effects of high ammonia concentration and metabolic by-products on the rates of nitrification. Ammonia removal efficiency reached above 99% at an empty bed retention time of as low as 8 s when inlet concentrations were below 350 ppm. The maximum and critical elimination capacities of the biotrickling filter were 118 g/m3/h and 108.1 g/m3/h, respectively. Kinetics analysis results showed that less than 2.5 s was required for the biotrickling filter with pH control to treat ammonia at concentrations of up to 500 ppm in compliance with the Taiwan EPA standard (outlet NH3 < 1 ppm). Results of mass balance and microbial community analysis indicated that complete removal was mainly contributed by the activities of autotrophic ammonia oxidizing bacteria and not by physical absorption or adsorption at low loading rates. However, at high inlet loadings, ammonium became the dominant by-product due to inhibitory effects of high ammonia concentration on the bacterial community.  相似文献   

8.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

9.
A soft wheat variety has been tested as the raw material for fuel ethanol production via a novel processing route. The bran stream produced by the break section of a Buhler mill was used as the sole nutrient source in solid-state fermentation for the production of hydrolytic enzymes by two fungal strains, Aspergillus awamori and Aspergillus oryzae. Co-fermentation of the two fungi was largely problematic because of a significant difference between their growth rates. A mixture of the two enzyme solutions produced by separate cultivation of the two strains was effective for simultaneous starch and protein hydrolyses. Response surface methodology was used to design ethanol production trials using the flour hydrolysate as the only nutrient source by Saccharomyces cerevisiae. In a medium containing 150 g l−1 glucose and 310 mg l−1 free amino nitrogen, ethanol yield on glucose reached 50.7%, i.e., 99.2% of the theoretical conversion ratio, in 72 h. The yield of CO2 from glucose was approximated as slightly higher than its theoretical yield due possibly to the availability of O2 in the early fermentation stage. The overall production of 2-methyl-1-butanol, 1-propanol, 2-methyl-1-propanol and 3-methyl-butanol in all trials of yeast fermentation remained below 1000 ppm. Mass balance calculation concluded conversion ratios of 29.61% (w/w) ethanol and 23.74% (w/w) CO2 from the wheat.  相似文献   

10.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   

11.
The aim of this research was to upgrade the performance of a conventional septic tank (CST) for on-site treatment of sewage with negligible costs. Although CST is known as an inexpensive pre-treatment system, a complementary treatment is required to reuse its output effluent. In this work, the quality of treated wastewater reached to the standard level for irrigation by the innovational changes made in the structure of CST for converting it into an advanced septic reactor (ASR). The modification consists adding some pipe and trays without using any mechanical or electrical equipment.ASR was operated at ambient temperatures in laboratory and pilot-scale. The effects of up-flow velocities (Vup) of 0.4, 0.5, 0.7, 1 and 1.5 m/h and hydraulic retention times (HRT) of 36, 24 and 12 h on the ASR treatment performance were studied.For optimum Vup of 1 m/h and HRT of 24 h and biomass specific methanogenic activity (SMA) of 0.31 mg COD/g VSS d the maximum removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and total suspended solids (TSS) were 86.2%, 79.4% and 95%, respectively.The results showed that ASR is an appropriate alternative for CST for sewage on-site treatment by a low cost modification.  相似文献   

12.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

13.
14.
Simultaneous photocatalytic reduction of poisonous Cr(VI) and Ni(II) ions, coupled with photocatalytic oxidation of sodium dodecyl benzene sulfonate (SDBS) were studied with a trace amount of commercial titania nanoparticles and by means of a direct-photo-irradiation reactor. The co-presence of metal ions and SDBS causes metal ions reduction as well as SDBS oxidation to enhance and energy efficiency to improve. XRD, XPS and FTIR analysis were used to characterize TiO2 particles before and after usage with the aim of evaluating the mechanism of reactions. The effect of major operating parameters, pH and temperature, was investigated. Under conditions of [Cr(VI)]0 = [Ni(II)]0 = 5 mg/L, [SDBS]0 = 10 mg/L, [TiO2] = 40 mg/L, pH 6 and T = 35 °C; the removal efficiencies of 55.4%, 71.2% and 57.2% were obtained, respectively, for Cr(VI) and Ni(II) reduction, as well as for SDBS oxidation, after 110 min operation. The relevant kinetic model jointed with the Arrhenius equation was introduced. Pseudo-first-order reactions are relevant. Energy consumption (electrical and thermal) evaluations revealed that operations at higher temperatures provide significant cost reduction. Meantime, a criterion was proposed for a consistent assessment of this kind of processes.  相似文献   

15.
This study aimed to explore the influences of single-chamber systems with different applied voltage on bio-hydrogen (H2) production. The reactor used was the bio-electrochemically assisted microbial reactor (BEAMR) membrane-less (BEAMR-membrane-less, BML). The microbial dark fermentative H2 production method was adopted. After the hot screening process and the DNA sequencing, the domesticated dominant microflora was Clostridium sp. This study discussed the influences of the cases with (continuous and intermittent) and without applied voltage separately. The results showed that, the H2 production rate of the case with intermittent applied voltage (117 mL/h g VSS) of 0.24 V was increased of 1.7 folds higher than the without applied voltage (69 mL/h g VSS) and 1.3 folds higher than the case with continuous applied voltage (88.2 mL/h g VSS) of 0.24 V. The produced H2 concentration with intermittent applied voltage was 18.9% (18.6–19.1%) higher than the without applied voltage, while there was no significant difference with continuous applied voltage.  相似文献   

16.
The feasibility of using endpoint pH control to achieve stable partial nitritation (PN) in an SBR for landfill leachate treatment was investigated. By imposing a fixed-time anoxia followed by variable-time aeration in an SBR cycle, successful partial nitritation was maintained for 182 days at a nitrogen loading rate of 0.30–0.89 kg/m3/day. The effluent NO2-N/NH4+-N ratio and the effluent NO3-N concentration were 1.30 ± 0.22 and 16 ± 9 mg/L, respectively. High free ammonia (FA) and low dissolved oxygen (DO) concentrations were inhibition factors of nitrate formation. The termination of aeration at a suitable endpoint pH was the key to achieve an effluent NO2-N/NH4+-N ratio close to the stoichiometric value. This endpoint pH control strategy represents practical potentials in the engineered application of combined PN–ANAMMOX processes.  相似文献   

17.
In this study, recalcitrant total phenol (TPh) and organic matter removal were investigated at olive mill wastewater (OMW) in sequential Coagulation and Fenton system. This study focused on different operational parameters such as pH, H2O2, and Fe2+ dosages, and [Fe2+]/[H2O2] ratios. The optimum conditions were determined as; pH = 3; [Fe2+] = 2.5 g/L; [Fe2+]/[H2O2] = 2.5. A higher treatment efficiency was achieved at sequential Coagulation and Fenton system (COD, 65.5%) and TPh, 87.2%), compared to coagulation process (COD, 51.4%; total organic carbon (TOC), 38.6% and total nitrogen (TN) 52.1%). This study demonstrated that the Coagulation and Fenton process has a potential for efficient removal of phenolic pollutants from wastewater.  相似文献   

18.
The effect of carbon dioxide (CO2) concentration on the ignition behaviour of hydrocarbon and CO2 gas mixtures is examined in both jets and confined explosions. Results from explosion tests are presented using a 20 l explosion sphere and an 8 m long section of 1.04 m diameter pipeline. Experiments to assess the flame stability and ignition probability in free-jets are reported for a range of different release velocities. An empirically-based flammability factor model for free-jets is also presented and results are compared to ignition probability measurements previously reported in the literature and those resulting from the present tests.The results help to understand how CO2 changes the severity of fires and explosions resulting from hydrocarbon releases. They also demonstrate that it is possible to ignite gas mixtures when the mean concentration is outside the flammable range. This information may be useful for risk assessments of offshore platforms involved in carbon sequestration or enhanced oil recovery, or in assessing the hazards posed by poorly-inerted hydrocarbon processing plant.  相似文献   

19.
Ocean Afforestation, more precisely Ocean Macroalgal Afforestation (OMA), has the potential to reduce atmospheric carbon dioxide concentrations through expanding natural populations of macroalgae, which absorb carbon dioxide, then are harvested to produce biomethane and biocarbon dioxide via anaerobic digestion. The plant nutrients remaining after digestion are recycled to expand the algal forest and increase fish populations. A mass balance has been calculated from known data and applied to produce a life cycle assessment and economic analysis. This analysis shows the potential of Ocean Afforestation to produce 12 billion tons per year of biomethane while storing 19 billion tons of CO2 per year directly from biogas production, plus up to 34 billion tons per year from carbon capture of the biomethane combustion exhaust. These rates are based on macro-algae forests covering 9% of the world's ocean surface, which could produce sufficient biomethane to replace all of today's needs in fossil fuel energy, while removing 53 billion tons of CO2 per year from the atmosphere, restoring pre-industrial levels. This amount of biomass could also increase sustainable fish production to potentially provide 200 kg/yr/person for 10 billion people. Additional benefits are reduction in ocean acidification and increased ocean primary productivity and biodiversity.  相似文献   

20.
In the present study, 4 different functionalized pyrazoliums based on sulfoalkyl-pyrazolium hydrogensulfate and alkylsulfo-alakylpyrazolium hydrogensulfate were explored to catalyze biodiesel production from bitter apple oil (BAO). The results demonstrated that a longer chains catalyst of 2-(4-sulfobutyl) pyrazolium hydrogensulfate (SBPHSO4) exhibited the highest catalytic activity, which is attributed to its strong acidity. The highest yield of esters was up to 89.5% when the reaction was carried out under the conditions of 5.2 wt% of SBPHSO4, molar ratio of methanol to BAO of 15:1, 170 °C, and 800 rpm for 6 h. These results demonstrated that ionic liquids offer a promising new type of pyrazolium catalyst for biodiesel production. The use of clean ionic liquids in preparing clean biodiesel could solve the drawbacks associated with using the old conventional catalysts and might be employed as an efficient catalyst for such relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号