首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roots of Populus euphratica, a plant that grows in the lower reaches of the Tarim River, Northwest China, exhibit a significant level of hydraulic redistribution; however, quantitative assessments of the water-sharing process and its ecological effects are limited. This study was designed to obtain such data using an assessment model based on field observation parameters, including soil water content (soil water potential), root distribution, and stable isotope δ18O values of soil and plant samples during the entire growing season. The results showed that hydraulic redistribution in P. euphratica can be detected in 0–120 cm soil layers, with the amount of hydraulically redistributed water (HRW) in the soil found at different depths as follows: 60–80?>?40–60?>?20–40?>?0–20?>?80–100?>?100–120 cm. The variations in HRW in soil layers can be partly attributed to the vertical distribution of roots. The denser roots found at greater depths positively influenced the amount of redistributed water in lower soil layers. During the growing season, the amount of HRW reached a daily average of 0.27 mm, which allowed increased transpiration and provided an adequate water supply to herbs. Based on the stable isotope (δ18O) data, the amount of HRW provided by the roots of P. euphratica could meet 22–41 % of its water demand.  相似文献   

2.
Desertification is a pressing issue in the dry Tarim River basin, which is under anthropogenic stresses. In this study, double sampling for stratification (DSS) is employed to inventory Populus euphratica Oliv. forests in the lower reaches of the Tarim River Basin in Xinjiang, China. The two objectives were evaluating DSS as a sampling technique for monitoring desertification and generating baseline information for permanent observation. Here, DSS consists of two phases: in phase 1, crown cover is observed on a large sample of plots on a high resolution satellite image, and these photo-plots are stratified into five crown cover strata. Phase 2 is a stratified random sample from these photo-plots and the sampled plots are field observed. Approximately 32% of the study area is without P. euphratica trees. As expected, estimated mean poplar tree density and basal area increase with crown cover. DSS takes advantages of stratification (fieldwork efficiency and statistical precision) without the need for a priori strata delineation. It proves feasible for inventory the sparse poplar population and holds promise for the assessment of trees outside the forest, where density varies considerably and pre-stratification is intractable. It can be integrated into permanent observation systems for monitoring vegetation changes.  相似文献   

3.
The ecological water conveyance project (EWCP) in the lower reaches of the Tarim River provided a valuable opportunity to study hydro-ecological processes of desert riparian vegetation. Ecological effects of the EWCP were assessed at large spatial and temporal scales based on 13 years of monitoring data. This study analyzed the trends in hydrological processes and the ecological effects of the EWCP. The EWCP resulted in increased groundwater storage—expressed as a general rise in the groundwater table—and improved soil moisture conditions. The change of water conditions also directly affected vegetative cover and the phenology of herbs, trees, and shrubs. Vegetative cover of herbs was most closely correlated to groundwater depth at the last year-end (R?=?0.81), and trees and shrubs were most closely correlated to annual average groundwater depth (R?=?0.79 and 0.66, respectively). The Normalized Difference Vegetation Index (NDVI) responded to groundwater depth on a 1-year time lag. Although the EWCP improved the NDVI, the study area is still sparsely vegetated. The main limitation of the EWCP is that it can only preserve the survival of existing vegetation, but it does not effectively promote the reproduction and regeneration of natural vegetation.  相似文献   

4.
在调查塔里木河地区不同混交模式林分生产力、生物量及其分配状况、林分土壤养分分配状况、混交距离对胡杨生长的影响与不同林分土壤水源涵养能力的基础上,研究不同混交模式的结构与功能关系.结果表明,胡杨—柽柳块状混交林的生产力、生物量及其分配状况均好于胡杨—柽柳带状混交林与胡杨纯林.胡杨—柽柳块状混交林林下枯落物分解速度较快,积累量明显少于胡杨—柽柳带状混交林与胡杨纯林,说明胡杨—柽柳块状混交林具有较好的改良土壤作用,胡杨—柽柳块状混交林的土壤物理、化学性质及其涵养水源功能好于胡杨—柽柳混交林与胡杨纯林.此外,25 a胡杨—柽柳混交林混交距离应大于900 cm;混交方式采用块状混交能起到较好的效果.  相似文献   

5.
Non-point source water pollution is a major problem in most parts of the world, but is also very difficult to quantify and control since it is not easily separated from point sources and can theoretically originate from the whole watershed. In this article, we evaluate the relationship between land use and land cover and four water pollution parameters in a watershed in Southeast Brazil. The four parameters are nitrate, total ammonia nitrogen, total phosphorous, and dissolved oxygen. To help concentrate on non-point source pollution, only data from the wet seasons of the time period (2001–2013) were analysed, based on the fact that precipitation causes runoff which is the main cause of diffuse pollution. The parameters measured were transformed into loads, which were in turn associated with an exclusive contribution area, so that every measuring station could be considered independent. Analyses were also performed on riparian zones of different widths to verify if the effect of the land cover on the water quality of the stream decreases with the increased distance. Pearson correlation coefficients indicate that urban areas and agriculture/pasture tend to worsen water quality (source). Conversely, forest and riparian areas have a reducing effect on pollution (sink). The best results were obtained for total ammonia nitrogen and dissolved oxygen using the whole exclusive contribution areas with determination coefficients better than R2≈0.8. Nitrate and total phosphorous did not produce valid models. We suspect that the transformation delay from total ammonia nitrogen to nitrate might be an important factor for the poor result for this parameter. For phosphorous, we think that the phosphorous sink in the bottom sediment might be the most limiting factor explaining the failure of our models.  相似文献   

6.
Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.  相似文献   

7.
In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate ( $\updelta ^{15}$ N and $\updelta ^{18}$ O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions.  相似文献   

8.
Soil salinization is an important worldwide environmental problem, especially in arid and semi-arid regions. Knowledge of its temporal and spatial variability is crucial for the management of oasis agriculture. The study area has experienced dramatic change in the shallow groundwater table and soil salinization during the 20th century, especially in the past two decades. Classical statistics, geostatistics and geographic information system (GIS) were applied to estimate the spatial variability of the soil salt content in relation to the shallow groundwater table and land use from 1983 to 2005. Consumption of reservoir water for agricultural irrigation was the main cause of a rise in the shallow groundwater table under intense evapotranspiration conditions, and this led indirectly to soil salinization. The area of soil salt accumulation was greater in irrigated than in non-irrigated landscape types with an increasing of 40.04% from 1983 to 2005 in cropland at ∼0.43 t ha−1 year−1, and an increase at ∼0.68 t ha−1 year−1 in saline alkaline land. Maps of the shallow groundwater table in 1985 and 2000 were used to deduce maps for 1983 and 1999, respectively, and the registration accuracy was 99%.  相似文献   

9.
This paper is based on long-term monitoring data for soil water, salt content, and groundwater characteristics taken from shelterbelts where there has been no irrigation for at least 5 years. This study investigated the distribution characteristics of soil water and salt content in soils with different textures. The relationships between soil moisture, soil salinity, and groundwater level were analyzed using 3 years of monitoring data from a typical oasis located in an extremely arid area in northwest China. The results showed that (1) the variation trend in soil moisture with soil depth in the shelterbelts varied depending on soil texture. The soil moisture was lower in sandy and loamy shelterbelts and higher in clay shelterbelts. (2) Salinity was higher (about 3.0 mS cm?1) in clay shelterbelts and lower (about 0.8 mS cm?1) in sandy shelterbelts. (3) There was a negative correlation between soil moisture in the shelterbelts and groundwater level. Soil moisture decreased gradually as the depth of groundwater table declined. (4) There was a positive correlation between soil salinity in the shelterbelts and the depth of groundwater table. Salinity increased gradually as groundwater levels declined.  相似文献   

10.
A thorough understanding of groundwater recharge source, particularly its rate, is usually a prerequisite for effective water resources management. In this paper, we report the impact of Yellow River water seepage from the North Henan Plain, using both hydrogeochemical and stable isotopic analysis data. Seven Yellow River water samples, 10 groundwater samples from a river-parallel transect, and 36 groundwater samples from four different perpendicular transects to the Yellow River in the western, middle, and eastern plain were collected and analyzed. It inferred that cation exchange of Ca2+ and/or Mg2+ for Na+ occurred in groundwaters because of the dissolution of carbonate rocks. The hydrogeochemical results indicate that western piedmont lateral groundwater and the Yellow River are both important sources of groundwater recharge for the western transect of the North Henan Plain, while the former is a greater recharge source for the middle transect, and the latter is a greater recharge source for the eastern transect. Stable isotope data support Yellow River water incursion into the groundwater. The approximate distance (based on chloride concentration) from the Yellow River to border of the impact zone is17.43–23.40 km in the western plain, 52.46 km in the middle plain, and 49.82 km in the eastern plain.  相似文献   

11.
The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb–Zn–Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg − 1, 20 g kg − 1 and 200 mg kg − 1 for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange capacity. The mobilization of Pb, Zn and Cd in soils depends on the persistence of the metal-containing particles in the atmosphere; the longer the time, the more abundant the stable forms. The dumped mining/smelting waste is less risk of easily mobilizable metal forms, however, downward metal migration especially due to the periodical leaching of the waste was observed.  相似文献   

12.
Perchlorate contamination was investigated in groundwater and surface water from Sivakasi and Madurai in the Tamil Nadu State of South India. Sensitive determination of perchlorate (LOQ?=?0.005 μg/L) was achieved by large-volume (500 μL) injection ion chromatography coupled with tandem mass spectrometry. Concentrations of perchlorate were <0.005–7,690 μg/L in groundwater (n?=?60), <0.005–30.2 μg/L in surface water (n?=?11), and 0.063–0.393 μg/L in tap water (n?=?3). Levels in groundwater were significantly higher in the fireworks factory area than in the other locations, indicating that the fireworks and safety match industries are principal sources of perchlorate pollution. This is the first study that reports the contamination status of perchlorate in this area and reveals firework manufacture to be the pollution source. Since perchlorate levels in 17 out of 57 groundwater samples from Sivakasi, and none from Madurai, exceeded the drinking water guideline level proposed by USEPA (15 μg/L), further investigation on human health is warranted.  相似文献   

13.
A total of 144 isolates of Pseudomonas spp. (48 each from the Yamuna River water, wastewater irrigated soil and groundwater irrigated soil) were tested for their resistance against certain heavy metals and antibiotics. Minimum inhibitory concentrations (MICs) of Hg2?+?, Cd2?+?, Cu2?+?, Zn2?+?, Ni2?+?, Pb2?+?, Cr3?+? and Cr6?+? for each isolate were also determined. A maximum MIC of 200 ??g/ml for mercury and 3,200 ??g/ml for other metals were observed. The incidences of metal resistance and MICs of metals for Pseudomonas isolates from the Yamuna water and wastewater irrigated soil were significantly different to those of groundwater irrigated soil. A high level of resistance against tetracycline and polymyxin B (81.2%) was observed in river water isolates. However, 87.5% of Pseudomonas isolates from soil irrigated with wastewater showed resistance to sulphadiazine, whereas 79.1% were resistant to both ampicillin and erythromycin. Isolates from soil irrigated with groundwater exhibited less resistance towards heavy metals and antibiotics as compared to those of river water and wastewater irrigated soil. Majority of the Pseudomonas isolates from water and soil exhibited resistance to multiple metals and antibiotics. Resistance was transferable to recipient Escherichia coli AB2200 strains by conjugation. Plasmids were cured with the curing agent ethidium bromide and acridine orange at sub-MIC concentration.  相似文献   

14.
Impact of wastewater irrigation on some biological properties was studied in an area where treated sewage water is being supplied to the farmers since 1979 in the western part of National Capital Territory of New Delhi under Keshopur Effluent Irrigation Scheme. Three fields were selected which had been receiving irrigation through wastewater for last 20, 10 and 5 years. Two additional fields were selected in which the source of irrigation water was tubewell. The soil bacterial and fungal population density was studied in soil layers of 0?C15, 15?C30, 30?C60 and 60?C120 cm depths. Groundwater samples were collected from the piezometers installed in the field irrigated with sewage water for last 20, 10 and 5 years. Results indicate that there was significant increase in bacterial and fungal count in sewage-irrigated soils as compared to their respective control. The population density of bacteria and fungi in waste water-irrigated soils increased with the duration of sewage water application and decreased with increasing depth. The bacterial and fungal count was also directly proportional to organic carbon, sand and silt content and negatively correlated to the clay content, electrical conductivity, pH and bulk density of the soil. Groundwater under sewage-irrigated fields had higher values of most probable number (MPN) index as compared to that of tubewell water-irrigated fields. All the shallow and deep groundwaters were found to be contaminated with faecal coliforms. The vadose zone had filtered the faecal coliform to the tune of 98?C99%, as the MPN index was reduced from ??18,000 per 100 ml of applied waste water to 310 per 100 ml of groundwater under 20 years sewage-irrigated field. The corresponding values of MPN were 250 and 130 per 100 ml of shallow groundwater under 10 and 05 years sewage-irrigated fields, respectively. Rapid detection of faecal contamination suggested that the Citrobacter freundii and Salmonella were dominant in shallow groundwater, while Escherichia coli was dominant in deep groundwater collected from sewage-irrigated field.  相似文献   

15.
The study on the spatial distribution of forest soil organic carbon (SOC) is of great significance for accurate assessment of carbon storage in forest ecosystems. In the present study, by taking eight kinds of forest soils of Mountain Lushan in the subtropical area as the research object, we studied the spatial distribution characteristics of SOC in this mountainous area. The results showed that the SOC content and SOC density (SOCD) of main forest types in the Mountain Lushan were lower than the national and the world average. The soil layer of Lushan forest was thinner, and the SOC and active SOC (ASOC) contents of different forest types and SOCDs are the highest in the surface soil. SOCD of the topsoil accounts for 32.64–54.03% of the total SOCD in the whole soil profile. Surface litter is an important source of SOC, and the different vegetation types are the important reason for the different spatial distribution of SOC in this area. Soil SOC contents in the high-altitude forest (bamboo forest, deciduous broadleaf forest, Pinus taiwanensis forest, evergreen-deciduous forest, and coniferous-broadleaved mixed forest) were higher than those in the low-altitude forest (evergreen broadleaf forest, shrub, and Pinus massoniana forest). However, the difference in SOC content exhibited at the altitude gradient is significantly lower than that in SOC in the soil profile. This indicates that both soil depth and elevation are the important factors that affected SOC distribution. However, the influence of soil depth on spatial distribution of SOC may be more complex than that of altitude. Vegetation types and soil properties are the main reasons for the large differences of reduction rate in the contents of SOC and ASOC.  相似文献   

16.
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4–12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11–0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (K S ?=?5.25?×?10?4 cm/s). The soil containing 47 % silt, 11 % clay, and 1.54 % organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R 2?=?0.977, RMSE?=?1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42–49 %. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.  相似文献   

17.
Water Quality Assessment of Osun River: Studies on Inorganic Nutrients   总被引:5,自引:0,他引:5  
The present investigation provides data of some ions, namely Na+, Ca2+, NH4 +,Cl-, NO3 -,CN- and PO4 3- on water samples of river Osun,selected rivers in the region and groundwaters. The pH,temperature, electrical conductivity (EC), total dissolvedsolids (TDS), total hardness (TH) and total carbon (IV) oxide(TCO2) have also been determined to asses the chemicalstatus and pollution levels of these water sources. The highervalues of certain parameters with respect to the acceptablestandard limits for drinking water indicate the pollution inboth groundwater and river water samples of the study area, and make the waters unsuitable for various applications. Thehigh pollution river water source showed higher levels ofphosphate, nitrate and ammonium ions (P < 0.05). There is nosignificant difference (P < 0.05) between the meanconcentrations of other inorganic nutrients in the high and lowpollution water source types. The correlation coefficientbetween quality parameter pairs of river water and groundwatersamples are determined and the significance of these parametersin both types of water sources are discussed.  相似文献   

18.
The ability of herbicides to be adsorbed by the soil and sediment and their tendency to be desorbed are some of the most important factors affecting soil and water contamination. Therefore, a sorption study was conducted to evaluate the adsorption of cyhalofop-butyl, butyl (2R)-2-[4-(4-cyano-2-fluorophenoxy) phenoxy] propanoate, in the sandy clay loam and clayey soils using a batch equilibrium method. The adsorption of cyhalofop-butyl was found positively related with the clay and organic carbon content. Freundlich constants (K f) of cyhalofop-butyl in the clayey and sandy clay loam were found to be 13.39 and 2.21, respectively. Sorption coefficients (K oc) and distribution coefficients (K d) were found to be 265.38 and 2,092.79, and 1.38 and 11.48, for sandy clay loam and clayey soils, respectively. The adsorption isotherm suggested a relatively higher affinity of cyhalofop-butyl to the adsorption sites at low equilibrium concentrations. The low value of the soil organic carbon partition coefficient (K oc) of cyhalofop-butyl in the sandy loam soil suggested its weaker adsorption in soil and thus increased its risk of mobility into water sources; hence, it should be used judiciously to prevent groundwater contamination  相似文献   

19.
Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O3) was high indicating a potential for phytotoxicity. Ammonia (NH3) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH?<?5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type’s structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.  相似文献   

20.
Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment of introduced species occupancy in native plant communities over broad regions. Vegetation data from 1,302 forest inventory plots across 24 states in northeastern and mid-western USA were used to examine and compare the distribution of introduced species in relation to forest fragmentation across ecological provinces and forest types, and to examine correlations between native and introduced species richness. There were 305 introduced species recorded, and 66 % of all forested plots had at least one introduced species. Forest edge plots had higher constancy and occupancy of introduced species than intact forest plots, but the differences varied significantly among ecological provinces and, to a lesser degree, forest types. Weak but significant positive correlations between native and introduced species richness were observed most often in intact forests. Rosa multiflora was the most common introduced species recorded across the region, but Hieracium aurantiacum and Epipactus helleborine were dominant in some ecological provinces. Identifying regions and forest types with high and low constancies and occupation by introduced species can help target forest stands where management actions will be the most effective. Identifying seemingly benign introduced species that are more prevalent than realized will help focus attention on newly emerging invasives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号