首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for separation and preconcentration of trace amounts of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions in various matrices was proposed. The method is based on the adsorption and chelation of the metal ions on a column containing Amberlite XAD-1180 resin impregnated with 1-(2-thiazolylazo)-2-naphthol (TAN) reagent prior to their determination by flame atomic absorption spectrometry (FAAS). The effect of pH, type, concentration and volume of eluent, sample volume, flow rates of sample and elution solutions, and interfering ions have been investigated. The optimum pH for simultaneous retention of all the metal ions was 9. Eluent for quantitative elution was 20 ml of 2 mol l(-1) HNO(3). The optimum sample and eluent flow rates were found as 4 ml min(-1), and also sample volume was 500 ml, except for Mn (87% recovery). The sorption capacity of the resin was found to be 0.77, 0.41, 0.57, and 0.30 mg g(-1) for Cu(II), Ni(II), Cd(II), and Mn(II), respectively. The preconcentration factor of the method was 200 for Cu(II), 150 for Pb(II), 100 for Cd(II) and Ni(II), and 50 for Mn(II). The recovery values for all of the metal ions were > or = 95% and relative standard deviations (RSDs) were < or = 5.1%. The detection limit values were in the range of 0.03 and 1.19 microg l(-1). The accuracy of the method was confirmed by analysing the certified reference materials (TMDA 54.4 fortified lake water and GBW 07605 tea samples) and the recovery studies. This procedure was applied to the determination of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) in waste water and lake water samples.  相似文献   

2.
This study reports a very selective, easy, and precise method for rapid separation of trace amounts of copper in aqueous samples using octadecyl silica-bonded phase membrane disks modified by 2,2'-[ethane-1,2-diylbis(thio)]dianiline (EDTD) combined with flame atomic absorption spectrometric determination. In addition, the synthesis and spectral characterization of EDTD have been described in detail. All the affecting experimental variables such as pH, amount of modifier, eluent type, sample and eluent flow rate, interfering ions, and disk capacity were also investigated. The target analyte (trace copper) was quantitatively retained at pH?=?4 and eluted with 6.0 mL of 0.5 M HNO3 at flow rates of 40 and 10 mL min?1 for analyte passage and elution steps, respectively, through the disks modified with 17.0 mg of EDTD. The proposed method also allows an enrichment factor of about 500 and has a detection limit of 0.005 ng mL?1. The method has been successfully applied for isolation and determination of copper in different water samples, peppers, and standard alloys.  相似文献   

3.
New solid-phase extractor (MWCNTs-5-ASA) was synthesized via covalent immobilization of 5-aminsalicylic acid onto multi-walled carbon nanotubes (MWCNs). The success of the functionalization process was confirmed using Fourier transform infrared spectroscopy, scanning electron microscope, and surface coverage determination. Batch experiments were conducted as a function of pH to explore MWCNTs-5-ASA efficiency to extract several metal ions viz., Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II). It was found that Pb(II) exhibits the highest extraction percentage with maximum adsorption capacity 32.75 mg g?1. Its binding performance was well fitted with Langmuir sorption isotherm. On the other hand, the selective separation and preconcentration of trace Pb(II) under dynamic conditions prior to determination by inductively coupled plasma-optical emission spectrometry was investigated under different parameters. These included the rate of flow and volume of sample solution, in addition to the type of the eluate, its volume and concentration. The effect of a variety of foreign ions on the recovery percentage was also evaluated. Trace Pb(II) ions present in 500 mL aqueous solution adjusted to pH 4.0 were retained on 50 mg of MWCNTs-5-ASA and completely eluted using 4.0 mL of 2 M HNO3. The limit of detection and the precision of the method were 0.25 ng mL?1 and 2.8 %, respectively (N?=?5). This methodology has been applied for the determination of Pb(II) in water samples with good results.  相似文献   

4.
We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L?1 for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g?1. The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8–100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.  相似文献   

5.
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L-1 HNO3 and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L?1 and 3.91 μg L?1, respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.  相似文献   

6.
A flow injection analysis method based on ion chromatography and luminol chemiluminescence detection was used for the simultaneous determination of copper (II) and cobalt (II) trace levels in soils and sediments following microwave-assisted acid digestion. Detection was based on chemiluminescence (CL) of the luminol–perborate system in an alkaline medium, which is catalyzed by both transition metals. The concentration and pH of the eluent (oxalic acid) was found to affect CL intensities and retention times, both of which were inversely proportional to the oxalic acid concentration. The calibration curves for both metal ions were linear and allowed a limit of detection of 0.003 μg l?1 for cobalt (II) and 0.014 μg l?1 for cooper (II) to be calculated. The proposed method was successfully used to determine both metal ions in certified reference materials of stream and river sediments and soil samples. Based on the results, the determination is free of interferences from the usual concomitant ions.  相似文献   

7.
A new, simple, and rapid separation and preconcentration procedure, for determination of Pb(II), Cd(II), Zn(II), and Co(II) ions in environmental real samples, has been developed. The method is based on the combination of coprecipitation of analyte ions by the aid of the Mo(VI)–diethyldithiocarbamate–(Mo(VI)-DDTC) precipitate and flame atomic absorption spectrometric determinations. The effects of experimental conditions like pH of the aqueous solution, amounts of DDTC and Mo(VI), standing time, centrifugation rate and time, sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of the analyte ions. The preconcentration factors were found to be 150 for Pb(II), Zn(II) and Co(II), and 200 for Cd(II) ions. The detection limits were in the range of 0.1–2.2 μg L?1 while the relative standard deviations were found to be lower than 5 % for the studied analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of certified reference material (CRM TMDW-500 Drinking Water). The procedure was successfully applied to seawater and stream water as liquid samples and baby food and dried eggplant as solid samples in order to determine the levels of Pb(II), Cd(II), Zn(II), and Co(II) ions.  相似文献   

8.
A procedure was developed for the determination of Cd, Cu, Zn, Co, Ni, Mn, Pb and Mo in water samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) after preconcentration on a morpholine dithiocarbamate (mor-DTC) supported by bagasse (Saccharam aphisinaram). The sorbed elements were subsequently eluted with 4,M HNO3 and the acid eluates were analysed by ICP–AES. The influence of various parameters such as pH, flow rate of sample, eluent concentration, volume of the sample and volume of eluent were investigated to enhance the sensitivity of the present method. A 20,mL disposable syringe served as preconcentration column. Under the optimal conditions Cd, Cu, Zn, Co, Ni, Mn, Pb and Mo in aqueous sample was concentrated about 100-fold. The sorption recoveries of elements were higher than 99.6%. The method is also applied for the analysis of natural and spiked water samples.  相似文献   

9.
The present study reports on the application of modified groundnut shell as a new, easily prepared, and stable sorbent for the extraction of trace amount of Cr(III) in aqueous solution. 2-Hydroxybenzaldiminoglycine was immobilized on groundnut shells in alkaline medium and then used as a solid phase for the column preconcentration of Cr(III). The elution was carried out with 3 mL of 2 mol?L?1 HCl. The amount of eluted Cr(III) was determined by spectrophotometry using cefaclor as a complexing reagent and by flame atomic absorption spectrometry (FAAS). Different experimental variables such as pH, amount of solid sorbent, volume and concentration of eluent, sample and eluent flow rate, and interference of other metal ions on the retention of Cr(III) were studied. Under the optimized conditions, the calibration curves were found to be linear over the concentration range of 13–104 and 10–75 μg?L?1 with a detection limit of 3.64 and 1.24 μg?L?1 for spectrophotometric method and FAAS, respectively. An enrichment factor of 200 and RSD of ±1.19–1.49 % for five successive determinations of 25 μg?L?1 were achieved. The column preconcentration was successfully applied to the analysis of tap water and underground water samples.  相似文献   

10.
A solid phase extraction method for the determination of gold(III) at trace levels by flame atomic absorption spectrometer (FAAS) was developed. The method was based on retention of gold as chloro complexes through the Amberlite XAD-2000. The effect of some analytical parameters including hydrochloric acid concentration, sample volume, sample and eluent flow rates, eluent volume, eluent concentration and interfering ions on the recovery of gold(III) was investigated. The retention of gold(III) from 1.5 mol l−1 HCl solution and the recovery of gold with 0.07 mol l−1 NH3 solution were quantitative (≥95%). The relative standard deviation (RSD) was calculated as 3.2% (n = 10). The detection limit for gold was 2 μg l−1. The accuracy was checked with the determination of gold spiked an artificial seawater and a pure copper samples.  相似文献   

11.
This study reports the feasibility of applying directly suspended liquid-phase microextraction (DSLPME)-gas chromatography detection for the pre-concentration and determination of low levels of eight polychlorinated biphenyls (PCBs) in aqueous samples. The technique requires minimal sample preparation, analysis time and solvent consumption and represents significant advantages over conventional analytical methods. The experimental parameters such as salt content, sample temperature, stirring rate, extraction time, micro-drop volume and breakthrough volume were investigated and found to have significant influences on DSLPME. Under the optimal experimental conditions, the enrichment factor ranged from 578 to 729, and the recovery was above 93 %. Calibration curves possessed good linearity (R 2?>?0.99) over a wide concentration range of 0.1–10.0 μg L?1 with limits of detection ranging from 0.01 to 0.07 μg L?1. The relative standard deviations for 1.0 μg L?1 of PCBs in water by using internal standard were in the range 2–14 % (n?=?3). The proposed simple, accurate and sensitive analytical method was applied successfully to the determination of trace amounts of PCBs in water samples.  相似文献   

12.
In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min?1. The uranium complex was removed from the resin by 0.1 mol dm?3 HCl at flow rate of 3.2 mL min?1 and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm?3 HCl, 3.2 mL min?1) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L?1, a relative standard deviation (RSD) of 0.8 % at 100 μg L?1, enrichment factor of 30, and a sample throughput of 42 h?1, whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L?1, a RSD of 1.32 % at 10 μg L?1, enrichment factor of 150, and a sampling frequency of 11 h?1 were reported.  相似文献   

13.
Dispersive liquid?Cliquid microextraction followed by inductively coupled plasma-optical emission spectrometry has been investigated for determination of Cd(II) ions in water samples. Ammonium pyrrolidine dithiocarbamate was used as chelating agent. Several factors influencing the microextraction efficiency of Cd (II) ions such as extracting and dispersing solvent type and their volumes, pH, sample volume, and salting effect were optimized. The optimization was performed both via one variable at a time, and central composite design methods and the optimum conditions were selected. Both optimization methods showed nearly the same results: sample size 5 mL; dispersive solvent ethanol; dispersive solvent volume 2 mL; extracting solvent chloroform; extracting solvent volume 200  $\upmu $ L; pH and salt amount do not affect significantly the microextraction efficiency. The limits of detection and quantification were 0.8 and 2.5 ng L???1, respectively. The relative standard deviation for five replicate measurements of 0.50 mg L???1 of Cd (II) was 4.4%. The recoveries for the spiked real samples from tap, mineral, river, dam, and sea waters samples ranged from 92.2% to 104.5%.  相似文献   

14.
The present research reports on the application of modified multiwalled carbon nanotubes as a new, easily prepared, and stable solid sorbent for the column preconcentration of ultra-trace amounts of cadmium in aqueous solution. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and modified with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and then were used as a solid phase for the column preconcentration of Cd(II). Elution was carried out with 0.5 mol?L?1 HNO3. The amount of eluted Cd(II) was measured using electrothermal atomic absorption spectrometry. Various parameters such as pH, sample and eluent flow rate, eluent concentration, breakthrough volume, and interference of a great number of anions and cations on the retention of analyte on sorbent were studied. Under the optimized conditions, the calibration graph was linear in the range of 0.67 ng?L?1 to 5.0 μg?L?1 and the detection limit (3Sb, n?=?7) was 0.14 ng?L?1 in initial solution. A preconcentration factor of 300 and relative standard deviations of ±3.6 % for seven successive determinations of 3 ng of Cd(II) were achieved. The column preconcentration was successfully applied to the analysis of river water, waste water, and Persian Gulf water sample.  相似文献   

15.
The aim of the present work is the assessment of a new sorbent, prepared using silica gel coated with a pyrimidine derivative (allyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate), for extraction and preconcentration trace amount of lead from different samples prior to determination by flame atomic absorption spectrometry. Common coexisting ions did not interfere with the separation and determination of lead at pH?6, so that lead ion completely adsorbed on the column. The limit of detection based on three times the standard deviation of the blank was found to be 0.53 ng?mL?1 in original solution. Obtained sorption capacity for 1 g sorbent was 5.0 mg Pb. The linearity was maintained in the concentration range of 0.1–30.0 ng?mL?1 for the concentrated solution. Eight replicate determinations of 2.0 μg?mL?1 of lead in the final solution gave relative standard deviation of ±2.6 %. The proposed method was successfully applied to the determination trace amounts of lead in the environmental samples such as carrot, rice, zardchoobe, and real water samples.  相似文献   

16.
A new complexing agent, 2-((2-((1H-benzo[d]imidazole-2yl)methoxy)phenoxy)methyl)-1H-benzo[d]imidazole (BIMPI), was used in cloud point extraction and applied for selective pre-concentration of trace amounts of cadmium in cigarette samples. Cadmium was complexed with BIMPI in a buffer solution (pH?=?10) using Triton X-114 as surfactant and quantitatively extracted into a small volume of the surfactant-rich phase after centrifugation. Under optimized conditions (pH?=?10.0, 0.8?×?10?4?mol?L?1 BIMPI and 0.08 % (w/v) Triton X-114), calibration graph was linear in the range of 34.0–1,670.0 μg?L?1. The proposed method was applied to the determination of Cd in various cigarette (tobacco) samples which gave satisfactory results.  相似文献   

17.
A new electrochemical adsorptive stripping voltammetry method was developed for the determination of trace amounts of copper in food and water samples. The study of electrochemical behavior of Cu ion indicated that Cu(II) and Schiff base formed a complex in H3BO4–NaOH buffer solution (pH?=?7.25). An accumulation potential of ?100 mV (vs Ag/AgCl) was applied while the solution was stirred for 60 s. The response curve was recorded by scanning the potential, and the peak current of ?0.31 V (vs Ag/AgCl) was recorded. The peak current and concentration of copper accorded with linear relationship in the range of 0.04–120 ng mL?1. The relative standard deviation (for 12 ng mL?1 of copper) was 1.73 %, and the detection limit was 0.007 ng mL?1. The possible interference of some common ions was studied. The proposed method was applied to the determination of copper in water, rice, wheat, tea, milk, and tomato with satisfactory results.  相似文献   

18.
通过正交实验设计,对水体中MC-LR前处理过程中SPE柱的选择、水样pH值、洗脱液有机相浓度、酸度和体积等关键因素进行综合分析,得出最优前处理方案。通过精密度和加标回收实验,得出该方法精密度为4.81%,加标回收率为98.96%。  相似文献   

19.
In this study, an ultra-sensitive and highly selective, rapid flow-injection spectrophotometric method for the determination of iron (II) and total iron has been proposed. The method was based on the reaction between iron (II) and 2′, 3, 4′, 5, 7-pentahydroxyflavone in slightly acidic solution with a strong absorption at 415 nm. The carrier solution used was 1?×?10?5 M 2′, 3, 4′, 5, 7-pentahydroxyflavone in 0.1 M HAc/Ac? buffer solution at pH 4.5. Parameters that affect simultaneously the determination of iron (II) and interfering ions were tested. The relative standard deviation for the determination of 50 μg L?1 iron (II) was 0.85 % (n?=?10), and the limit of detection (blank signal plus three times the standard deviation of the blank) was 3 μg L?1, both based on injection volumes of 20 μL. The method has been successfully applied to the determination of iron (II) and total iron in water samples and ore samples. The method was verified by analysing a certified reference material Zn/Al/Cu 43XZ3F.  相似文献   

20.
A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L?1 (based on 3Sb/m) in water and 0.4 and 1.6 μg L?1 in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1–300 and 2–400 μg L?1, repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号