首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Vegetation at the aquatic-terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower-density lateral tiller growth (characteristic of lower sand capture efficiency). Combined, these experiments provide evidence for a species-specific effect on coastal dune shape. Understanding how dominant ecosystem engineers, especially nonnative ones, differ in their interactions with abiotic factors is necessary to better parameterize coastal vulnerability models and inform management practices related to both coastal protection ecosystem services and ecosystem restoration.  相似文献   

2.
Although the public desire for healthy environments is clear‐cut, the science and management of ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is, small cumulative increases in an environmental stressor drive a much greater change than could be predicted from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad‐scale seagrass loss often occurs as a sudden event associated with human‐driven nutrient enrichment (eutrophication). We tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for 10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing such thresholds, as can occur through ineffective management of land‐derived inputs such as wastewater and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass meadows. Identification of tipping points may improve not only adaptive‐management monitoring that seeks to avoid threshold effects, but also restoration approaches in systems that have crossed them.  相似文献   

3.
Pringle RM 《Ecology》2008,89(1):26-33
Ecologists increasingly recognize the ability of certain species to influence ecological processes by engineering the physical environment, but efforts to develop a predictive understanding of this phenomenon are in their early stages. While many believe that the landscape-scale effects of ecosystem engineers will be to increase habitat diversity and therefore the abundance and richness of other species, few generalities exist about the effects of engineering at the scale of the engineered patch. According to one hypothesis, activities that increase structural habitat complexity within engineered patches will have positive effects on the abundance or diversity of other organisms. Here I show that, by damaging trees and increasing their structural complexity, browsing elephants create refuges used by a common arboreal lizard. Observational surveys and a lizard transplant experiment revealed that lizards preferentially occupy trees with real or simulated elephant damage. A second experiment showed that lizards vacate trees when elephant-engineered refuges are removed. Furthermore, local lizard densities increased with (and may be constrained by) local densities of elephant-damaged trees. This facilitative effect of elephants upon lizards via patch-scale habitat modification runs contrary to previously documented negative effects of the entire ungulate guild on lizards at the landscape scale, suggesting that net indirect effects of large herbivores comprise opposing trophic and engineering interactions operating at different spatial scales. Such powerful megaherbivore-initiated interactions suggest that anthropogenic changes in large-mammal densities will have important cascading consequences for ecological communities.  相似文献   

4.
Dwarf eelgrass (duckgrass; Zostera japonica) and Manila clams (Ruditapes philippinarum) are two introduced species that co-occur on intertidal flats of the northeast Pacific. Through factorial manipulation of clam (0, 62.5, 125 clams m−2) and eelgrass density (present, removed by hand, harrowed), we examined intra- and interspecific effects on performance, as well as modification of the physical environment. The presence of eelgrass reduced water flow by up to 40% and was also observed to retain water at low tide, which may ameliorate desiccation and explain why eelgrass grew faster in the presence of conspecifics (positive feedback). Although shell growth of small (20–50 mm) clams was not consistently affected by either treatment in this 2-month experiment, clam condition improved when eelgrass was removed. Reciprocally, clams at aquaculture densities had no effect on eelgrass growth, clam growth and condition, or porewater nutrients. Overall, only Z. japonica demonstrated strong population-level interactions. Interspecific results support an emerging paradigm that invasive marine ecosystem engineers often negatively affect infauna. Positive feedbacks for Z. japonica may characterize its intraspecific effects particularly at the stressful intertidal elevation of this study (+1 m above mean lower low water).  相似文献   

5.
Estuarine Vegetated Habitats as Corridors for Predator Movements   总被引:6,自引:0,他引:6  
Abstract: The spatial proximity of one habitat to another can strongly influence population and community dynamics. We investigated whether the proximity of intertidal oyster reefs to vegetated estuarine habitats, salt marshes, and seagrass beds, affects the abundance and community structure of benthic macroinvertebrates on reefs and predator-prey interactions between mobile predators and bivalves living on reefs. Benthic macroinvertebrate abundance was highest on reefs spatially separated from salt marshes. Macroinvertebrate species richness was highest on reefs separated from both salt marshes and seagrass beds. Comparisons of predation on juvenile bivalves transplanted to reefs for 7–12 days indicated that survivorship of clams was greatest on reefs spatially separated from both salt marshes and seagrass beds, whereas reef proximity to vegetated habitats did not affect the survivorship of oysters. The foraging behavior of blue crabs may explain patterns of macroinvertebrate abundance and clam survivorship among reefs with different proximity to vegetated habitats. In experiments conducted in 30-m2 field enclosures, blue crabs had higher predation rates on hard clams transplanted onto artificial reefs adjacent to salt marshes or seagrass beds than on reefs separated from both habitats by unvegetated sand bottom. Thus, vegetated habitats appeared to act as corridors by facilitating the access of blue crabs to oyster reefs and enhancing the intensity of blue crab predation. Such an understanding of the effects of landscape characteristics of estuarine habitats on their value as habitats for estuarine organisms can be used to predict the consequences of habitat fragmentation on ecosystem function and to improve strategies for habitat and species conservation and restoration.  相似文献   

6.
Coastal development and engineering projects preclude ecosystem processes that provide habitat for beach nesting birds. Management for coastal species may depend on actions that attempt to restore important habitat features and mitigate disturbance effects. However, species response to restoration or other management actions may be difficult to predict or measure. At Jones Beach State Park, on Long Island, New York, a 0.49 ha restoration project provided moist substrate foraging habitat for breeding Piping Plovers (Charadrius melodus) from 2002 to 2005. We examined whether foraging habitat restoration affected Piping Plover breeding population size, productivity, and fledgling production within 300 m of the restoration site. We found a positive relationship between habitat restoration and the number of fledglings produced per year. However, foraging habitat restoration did not significantly increase the number of Plover pairs breeding at Jones Beach. Our ability to evaluate restoration effects on Plovers depended on: 1) use of multiple performance criteria; 2) a design that allowed comparison of pre- and post-restoration data; and 3) a spatial control that allowed comparison of similar areas that were near and far from the restoration site. Despite the small size of the restoration project, there were measurable benefits to Plovers, indicating that foraging habitat restoration may be an effective tool for species recovery.  相似文献   

7.
The role of zooplankton in a tropical seagrass ecosystem was investigated in milkfish farms pollution-impacted and -unimpacted seagrass beds in Santiago Island coral reefs, Northwestern Philippines. The aim was to compare between the two sites: (1) abiotic factors and zooplankton community parameters, and (2) the trophic structure using C and N stable isotopes. Low water (98–119?mV) and sediment (–121 to ?138?mV) Oxidation Reduction Potential values indicated a reducing environment in the impacted site. Zooplankton in the impacted site showed the typical community response to eutrophication (low diversity, but high total abundance due to the dominance of the cyclopoid copepod Oithona oculata), generally few elevated δ15N values, but a significant shift towards depleted 13C due to the organic enrichment of fish-farm feeds. Apart from suggesting a highly complex food web with POM and zooplankton as main food sources in the unimpacted site, the Bayesian mixing model simulation generated reduced complexity in feeding interactions between basal sources, zooplankton, and fish including adults of a key fish species, Siganus fuscescens, in the impacted sites. In this study, C and N stable isotope analysis has clarified the importance of zooplankton as fish prey in a seagrass bed food web.  相似文献   

8.
9.
Marine coastal ecosystems, commonly referred to as blue ecosystems, provide valuable services to society but are under increasing threat worldwide due to a variety of drivers, including eutrophication, development, land-use change, land reclamation, and climate change. Ecological restoration is sometimes necessary to facilitate recovery in coastal ecosystems. Blue restoration (i.e., in marine coastal systems) is a developing field, and projects to date have been small scale and expensive, leading to the perception that restoration may not be economically viable. We conducted a global cost–benefit analysis to determine the net benefits of restoring coral reef, mangrove, saltmarsh, and seagrass ecosystems, where the benefit is defined as the monetary value of ecosystem services. We estimated costs from published restoration case studies and used an adjusted-value-transfer method to assign benefit values to these case studies. Benefit values were estimated as the monetary value provided by ecosystem services of the restored habitats. Benefits outweighed costs (i.e., there were positive net benefits) for restoration of all blue ecosystems. Mean benefit:cost ratios for ecosystem restoration were eight to 10 times higher than prior studies of coral reef and seagrass restoration, most likely due to the more recent lower cost estimates we used. Among ecosystems, saltmarsh had the greatest net benefits followed by mangrove; coral reef and seagrass ecosystems had lower net benefits. In general, restoration in nations with middle incomes had higher (eight times higher in coral reefs and 40 times higher in mangroves) net benefits than those with high incomes. Within an ecosystem type, net benefit varied with restoration technique (coral reef and saltmarsh), ecosystem service produced (mangrove and saltmarsh), and project duration (seagrass). These results challenge the perceptions of the low economic viability of blue restoration and should encourage further targeted investment in this field.  相似文献   

10.
Seagrass species function as typical foundation species that unifies most ecosystem processes. This ecosystem role depends largely on the morphological characteristics and structural complexity of seagrass beds, including their ecological importance for fish species. This study examined relationships between seagrass bed characteristics and associated fish communities in mixed seagrass beds. Correspondence analysis (CA) and canonical correlation analysis (CCoA) were performed to estimate relationships for individual seagrass bed characteristics. The CCoA results revealed that species richness and three-dimensional structure of seagrass had great effect on the biomass and richness of the associated fish community. The CA results revealed that the relative importance of seagrass bed characteristics differed among fish functional groups including fishes appearing on the surface of, inside, and on the bottom of seagrass beds. The fishes found on the surface of the beds preferred beds with low seagrass biomass and high three-dimensional structure, those inside the beds preferred beds with high seagrass biomass and high three-dimensional structure, and those on the bottom of the beds preferred locations with low seagrass biomass and low three-dimensional structure. The results of this study provide compelling evidence that seagrass beds with high species diversity and high three-dimensional structure, but intermediate biomass, may provide the great benefit to the associated fish community. Such niche complementarity among fishes may be a process facilitated by seagrass diversity for secondary production as an ecosystem functioning.  相似文献   

11.
Lenihan HS  Holbrook SJ  Schmitt RJ  Brooks AJ 《Ecology》2011,92(10):1959-1971
The species composition of coral communities has shifted in many areas worldwide through the relative loss of important ecosystem engineers such as highly branched corals, which are integral in maintaining reef biodiversity. We assessed the degree to which the performance of recently recruited branching corals was influenced by corallivory, competition, sedimentation, and the interactions between these factors. We also explored whether the species-specific influence of these biotic and abiotic constraints helps to explain recent shifts in the coral community in lagoons of Moorea, French Polynesia. Population surveys revealed evidence of a community shift away from a historically acroporid-dominated community to a pocilloporid- and poritid-dominated community, but also showed that the distribution and abundance of coral taxa varied predictably with location in the lagoon. At the microhabitat scale, branching corals grew mainly on dead or partially dead massive Porites ("bommies"), promontories with enhanced current velocities and reduced sedimentation. A demographic study revealed that growth and survival of juvenile Pocillopora verrucosa and Acropora retusa, the two most common branching species of each taxon, were affected by predation and competition with vermetid gastropods. By 24 months of age, 20-60% of juvenile corals suffered partial predation by corallivorous fishes, and injured corals experienced reduced growth and survival. A field experiment confirmed that partial predation by corallivorous fishes is an important, but habitat-modulated, constraint for branching corals. Competition with vermetid gastropods reduced growth of both branching species but unexpectedly also provided an associational defense against corallivory. Overall, the impact of abiotic constraints was habitat-specific and similar for Acropora and Pocillopora, but biotic interactions, especially corallivory, had a greater negative effect on Acropora than Pocillopora, which may explain the local shift in coral community composition.  相似文献   

12.
Are direct developers more locally adapted than planktonic developers?   总被引:6,自引:0,他引:6  
The hypothesis that populations of direct developers exhibit greater geographic differentiation in life history features than populations of planktonic developers, was tested with two species of grazing snails of the genus Littorina from 1986 to 1987. Littorina sitkana (direct developer) and L. scutulata (planktonic developer) coexist on sun- and wave-sheltered beaches from Alaska to Oregon, USA. Seasonal patterns in growth, survival and reproduction were monitored for samples from four geographically separated populations of each species grown in population cages at a common site, Friday Harbor, Washington, USA. The environmental and population effects on growth in the two species were determined in a four-way reciprocal transplant experiment with the same populations. Both the direct and planktonic developers exhibited geographic differentiation in life history features. Differentiation in the direct developer occurred over distances shorter than 30 km, while differentiation in the planktonic developer occurred over the 500 km distance examined (greater than their larvae would likely travel).  相似文献   

13.
14.
Restorations commonly utilize seed addition to formerly arable lands where the development of native plant communities is severely dispersal limited. However, variation in seed addition practices may profoundly affect restoration outcomes. Theory and observations predict that species-rich seed mixtures and seeding at high densities should enhance native plant community establishment, minimize exotic species cover, and may promote resistance and resilience to, and recovery from, environmental perturbations. We studied the post-seeding establishment of native plant communities in large grassland restoration plots, which were sown at two densities crossed with two levels of species richness on formerly arable land in Nebraska, USA, and their responses to drought. To evaluate drought resistance, recovery, and resilience of restored plant communities, we erected rainfall manipulation structures and tracked the response of seeded species cover and total plant biomass during experimental drought relative to controls and in the post-drought growing season. High seed richness and high-density seeding treatments resulted in greater richness and cover of native, seeded species per 0.5 m2 compared to low-richness and low-density treatments. Cover differences in response to seed mixture richness were driven by native forbs. Richness and cover of exotic species were lowest in high-richness and high-density treatments. We found little evidence of differential drought resistance, recovery, and resilience among seeding treatments. Increases in exotic species across years were restricted to drought subplots, and were not affected by seeding treatments. Grassland restoration was generally enhanced and exotic cover reduced both by the use of high-richness seed mixtures and high-density seeding. Given the lack of restoration treatment effects on the resistance, recovery, or resilience of seeded species exposed to drought, and the increases in exotic species following drought, other forms of active management may be needed to produce restored plant communities that are robust to climate change.  相似文献   

15.
Miyashita T  Takada M 《Ecology》2007,88(11):2803-2809
Although provisioning of habitat by ecosystem engineers is one of the most common biological interactions, previous studies have mostly focused on facilitative or bottom-up processes. Here we show that engineering effects can indirectly strengthen top-down effects mediated by predator abundance. We conducted a small-scale manipulative field experiment and broad-scale field observations of the plant, web spider, and detrital insect system in forest understory habitats. In the field experiment, artificially increasing architectural elements enhanced the abundance of spiders by providing physical support for web building. Moreover, aerial insects derived from the detrital food web decreased in response to increased spider abundance. As artificial architecture per se did not affect aerial detritivores, these results indicate that ecosystem engineering indirectly strengthens top-down effects mediated by predators. In field observations conducted in 12 cedar forests, path analyses supported the importance of an indirect pathway originating from understory vegetation complexity to spider abundance and to aerial detritivores. The effect size of spiders on detrital insects was similar in the field experiment and in the observations. These results indicate that the engineering effects of plants cascade to detrital insects through web spiders across different scales.  相似文献   

16.
Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer‐reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators.  相似文献   

17.
Allen DC  Vaughn CC 《Ecology》2011,92(5):1013-1019
Several decades of research have shown that biodiversity affects ecosystem processes associated with resource capture and the production of biomass within trophic levels. Although there are good reasons to expect that biodiversity influences non-trophic ecosystem processes, such as the physical creation or modification of habitat, studies investigating the role of biodiversity on physical processes are scarce. Here we report the results of a study using artificial streams to test the influence of freshwater mussel biodiversity on gravel erosion during high flows while manipulating mussel abundance. Mussel species vary in traits that should influence their effects on erosion, such as size, shell morphology, and burrowing behavior. We found that mussel species richness was associated with an increase in erosion at both low and high densities. Planned contrasts showed that the erosion observed in species mixtures was purely additive at low density, indicating that erosion in a species polyculture could routinely be predicted by the performance of monocultures. However, at high density certain combinations of species showed nonadditive effects on erosion, suggesting that organism abundance can fundamentally alter biodiversity effects. Although this may have been a result of altered species interactions at high density, our study design cannot confirm this.  相似文献   

18.
Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity.  相似文献   

19.
The macrofaunal colonization of isolated habitats is affected by many factors, ranging from distance to the nearest source population to the dispersal mechanism of the species. We investigated the initial epifaunal colonization at two sites, one situated in the Northern Gulf of Mexico and the other in the Northern Baltic Sea. At each site, artificial seagrass units were placed at 10- and 20-m distances from a continuous seagrass meadow, as well as inside the meadow over a 5-day colonization time. With the exception of amphipods in Gulf of Mexico, patch isolation had a negative effect on colonization for the other faunal species, irrespective of the sites. This inverse colonization pattern of amphipods suggests that they are not equally sensitive to patch isolation in different regions. Our results indicate that increasing habitat isolation can have serious consequences for the community composition of seagrass epifauna. Furthermore, we emphasize the need for larger-scale latitudinal comparative studies.  相似文献   

20.
Zeiter M  Stampfli A  Newbery DM 《Ecology》2006,87(4):942-951
Species coexistence and local-scale species richness are limited by the availability of seeds and microsites for germination and establishment. We conducted a seed addition experiment in seminatural grassland at three sites in southern Switzerland and repeated the experiment in two successive years to evaluate various circumstances under which seed limitation and establishment success affect community functioning. A collection of 144,000 seeds of 22 meadow species including grasses and forbs of local provenance was gathered, and seeds were individually sown in a density that resembled natural seed rain. The three communities were seed limited. Three years after sowing, single species varied in emergence (0-50%), survival (0-69%), and establishment rates (0-27%). One annual and 13 perennial species reached reproductive stage. Low establishment at one site and reduced growth at another site indicated stronger microsite limitation compared to the third site. Recruitment was influenced by differences in abiotic environmental conditions between sites (water availability, soil minerals) and by within-site differences in biotic interaction (competition). At the least water-limited site, sowing resulted in an increase in phytomass due to establishment of short-lived perennials in the second and third years after sowing. This increase persisted over the following two years due to establishment of longer-lived perennials. After sowing in a wetter year with higher phytomass, however, productivity did not increase, because higher intensity of competition in an early phase of establishment resulted in less vigorous plants later on. Due to the generally favorable weather conditions during this study, sowing year had a small effect on numbers of established individuals over all species. Recruitment limitation can thus constrain local-scale species richness and productivity, either by a lack of seeds or by reduced seedling growth, likely due to competition from the established vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号