首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Does the choice of climate baseline matter in ecological niche modelling?   总被引:1,自引:0,他引:1  
Ecological niche models (ENMs) have multiple applications in ecology, evolution and conservation planning. They relate the known locations of a species to characteristics of its environment (usually climate) over its geographical range. Most ENMs are trained using standard 30-year (1961-1990) or 50-year (1951-2000) baselines to represent current climate conditions. Species occurrence records used as input to the models, however, are frequently collected from time periods that differ from those from which the climate is derived. Since climate variability can be significant within and outside baselines, and the distributions of some plants and animals (e.g., annual plants, insects) can adjust to environmental conditions on much shorter time scales, this mismatch between collection records and climatic baselines may affect the utility and accuracy of model outputs. We investigated how the choice of baseline periods influenced modelling efforts, anticipating that climate baselines derived from the same temporal period as the species records would yield improved ENMs. Ten simulated species’ distributions were modelled using an ENM (Maxent) for (a) occurrences and climates within the same temporal period, based on eighteen 10-year baselines within the 20th century and (b) all available samples and climate baselines from 1951-2000 and 1961-1990. Each model was projected onto all the available 10-year climate scenarios and compared to the models trained on the corresponding scenario. We show that temporal mismatches of species occurrences and climate baselines can result in significantly poorer distribution models. Such temporal mismatch may be unavoidable for many studies, but we emphasize here the need to match the time range of samples and climate data whenever possible.  相似文献   

2.
Species distribution model is the term most frequently used in ecological modelling, but other authors used instead predictive habitat distribution model or species-habitat models. A consensual ecological modelling terminology that avoids misunderstandings and takes into account the ecological niche theory does not exist at present. Moreover, different studies differ in the type of niche that is represented by similar distribution models. I propose to use as standard ecological modelling terminology the terms “ecological niche”, “potential niche”, “realized niche” models (for modelling their respective niches), and “habitat suitability map” (for the output of the niche models). Therefore, the user can understand more easily that models always forecast species’ niche and relate more closely the different types of niche models.  相似文献   

3.
We investigate a recent proposal that invasive species display patterns of spatial "spread regulation" analogous to density-dependent regulation of population abundances. While invasive species do offer valuable tests of ecological theories about spatial spread, we argue that the statistical approach used in the study is not useful, and that the proposed definition of "spread regulation" is likely to be confusing. While concepts of negative feedbacks in spatial spread may be reasonable, the proposed definition of "spread regulation" encompasses accelerating, constant, or decelerating spread. There is no compelling biological or practical reason to adopt such a definition. Moreover, we show that the statistical patterns (from time series of ratios of newly to recently invaded sites) proposed as evidence of spread regulation are predictable from basic diffusion models or other common models of constant spread with some stochasticity in dynamics and/or observations. Because such a wide range of processes would generate the observed patterns, no clear biological conclusions emerge from the proposed approach to spread analysis. When regarded in the context of the impacts and management of invasive species, the proposed regulation concept has the potential to create costly misunderstandings.  相似文献   

4.
Ecological surprises, substantial and unanticipated changes in the abundance of one or more species that result from previously unsuspected processes, are a common outcome of both experiments and observations in community and population ecology. Here, we give examples of such surprises along with the results of a survey of well-established field ecologists, most of whom have encountered one or more surprises over the course of their careers. Truly surprising results are common enough to require their consideration in any reasonable effort to characterize nature and manage natural resources. We classify surprises as dynamic-, pattern-, or intervention-based, and we speculate on the common processes that cause ecological systems to so often surprise us. A long-standing and still growing concern in the ecological literature is how best to make predictions of future population and community dynamics. Although most work on this subject involves statistical aspects of data analysis and modeling, the frequency and nature of ecological surprises imply that uncertainty cannot be easily tamed through improved analytical procedures, and that prudent management of both exploited and conserved communities will require precautionary and adaptive management approaches.  相似文献   

5.
The pine-dominated forests of west-central Mexico are internationally recognized for their high biodiversity, and some areas are protected through various conservation measures including prohibition of human activity. In this region, however, there is evidence for human settlement dating back to ca. AD 1200. It is therefore unclear whether the present forest composition and structure are part of a successional stage following use by indigenous human populations during the past, or due to natural processes, such as climate. We present a study reconstructing the vegetation dynamics of pine-dominated forest over the past 4200 years using paleoecological techniques. Results from fossil pollen and charcoal indicate that, in this region, pine-dominated forests are the native vegetation type and not anthropogenically derived secondary succession. The predominant driving mechanism for the expansion of pine-dominated forest appears to be intervals of aridity and naturally induced burning. A close association is noted between pine abundance and longer-term climatic trends, including intervals of aridity between ca. 4200 and 2500, 1200 and 850, and 500 and 200 cal yr BP and shorter-term trends. Evident periodicity occurs in pine and Poaceae abundance every 80 years. These short-term quasi-periodic oscillations have been recorded in a number of lake and ocean sediments in Mexico and are thought to be linked to solar forcing resulting in drought cycles that occur at approximately the same time intervals.  相似文献   

6.
7.
Classical sampling methods often miss important components of coral reef biodiversity, notably organisms that remain sheltered within the coral matrix. Recent studies using sea kraits (sea snakes) as bio-indicators suggest that the guild of predators represented by anguilliform fish (Congridae, Muraenidae, Ophichthidae, henceforth “eels” for simplicity) were far more abundant and diverse than previously suspected. In the current study, eel diversity (similarity and species richness indices) estimated via sea snake sampling (SSS) was compared among six areas of one of the main oceanic biodiversity hotspot of the Pacific Ocean (southwest lagoon of New Caledonia). Based on the eel diversity in the snakes’ diet, the results obtained in six areas, in two snake species, and using different estimates (ANOSIM, Shannon index…) were consistent, suggesting that SSS provided robust information. Analyses also suggested subtle, albeit significant, differences in the eel assemblages among islets. Such spatial differences are discussed in light of local management practices. As SSS is easy to use, cost-effective, and provides the best picture of eel assemblages to date, it can be employed to monitor the eel assemblages in addition to the snakes themselves in many areas of the Indo-Pacific Ocean, thereby providing an index of the top predator biodiversity of many coral reefs.  相似文献   

8.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   

9.
Analysis of the isotope composition of calcareous structures of marine organisms has proved useful in providing biological data. The present study constitutes the first detailed work undertaken on the isotope composition of coleoid cephalopods. We analysed the carbon- and oxygen-isotope composition [δ13C (CO2− 3) and δ18O (CO2− 3), respectively] of the cuttlebone aragonite of wild and cultivated specimens of Sepia officinalis Linnaeus, 1758. δ13C (CO2− 3) ranged from −2.94 to 1.00‰, δ18O (CO2− 3) from −0.18 to 2.08‰. The carbon-isotope composition is not in equilibrium with the carbon species of the ambient seawater, and does not reflect the deposition of CaCO3 in seawater. The potential influence of environmental factors and biological processes on the carbon-isotope composition of the cuttlebone is discussed. In contrast to δ13C, the oxygen-isotope composition of cuttlebone aragonite appears to be in isotopic equilibrium with the ambient seawater. Seasonal changes in isotopic temperature revealed by our analyses agreed with changes in the temperature of the ambient seawater. CaCO3 was deposited all year round. A maximum life span of 2 yr, a year-round spawning season, and variable growth rates among and within individuals have been inferred from the isotopic temperatures. Received: 14 April 1998 / Accepted: 26 November 1998  相似文献   

10.
Currently, the most common strategy when managing forests for biodiversity at the landscape scale is to maintain structural complexity within stands and provide a variety of seral stages across landscapes. Advances in ecological theory reveal that biodiversity at continental scales is strongly influenced by available energy (i.e., climate factors relating to heat and light and primary productivity). This paper explores how available energy and forest structural complexity may interact to drive biodiversity at a regional scale. We hypothesized that bird species richness exhibits a hump-shaped relationship with energy at the regional scale of the northwestern United States. As a result, we hypothesized that the relationship between energy and richness within a landscape is positive in energy-limited landscapes and flat or decreasing in energy-rich landscapes. Additionally, we hypothesized that structural complexity explains less of the variation in species richness in energy-limited environments and more in energy-rich environments and that the slope of the relationship between structural complexity and richness is greatest in energy-rich environments. We sampled bird communities and vegetation across seral stages and biophysical settings at each of five landscapes arrayed across a productivity gradient from the Pacific Coast to the Rocky Mountains within the five northwestern states of the contiguous United States. We analyzed the response of richness to structural complexity and energy covariates at each landscape. We found that (1) richness had a hump-shaped relationship with available energy across the northwestern United States, (2) the landscape-scale relationships between energy and richness were positive or hump shaped in energy-limited locations and were flat or negative in energy-rich locations, (3) forest structural complexity explained more of the variation in bird species richness in energy-rich landscapes, and (4) the slope of the relationship between forest structural complexity and richness was steepest in energy-limited locations. In energy-rich locations, forest managers will likely increase landscape-scale bird diversity by providing a range of forest structural complexity across all seral stages. In low-energy environments, bird diversity will likely be maximized by managing local high-energy hotspots judiciously and adjusting harvest intensities in other locations to compensate for slower regeneration rates.  相似文献   

11.
SUMMARY

In recent years, indigenous tenure over forest lands has emerged as a means to conserve forests while recognizing indigenous rights. There is concern, however, that indigenous reserves may not be an appropriate policy tool for sustained forest conservation. Our research examined how recognition of indigenous common-property rights has controlled agricultural expansion and conserved forests in Bosawas Biosphere Reserve, Nicaragua. We used satellite imagery with empirical data gathered in the field on land-use institutions, population pressures, and land-use practices to compare whether indigenous communities under territorial management or public management are better able to (1) control the ‘fast threat’ of frontier expansion and (2) address the long-term ecological threats posed by indigenous land-use practices and institutional changes in the region. Our findings are that indigenous residents who share common-property rights over their territories are better able to control agricultural expansion than are indigenous residents living on public lands. With respect to the long-term threats to the region, a series of simulations of possible land-use pressures demonstrate that the enforcement of territorial boundaries and further development of indigenous forest management rules will prove crucial in determining land-use capacity and deforestation over the next 50 years.  相似文献   

12.
13.
The statistical analysis of continuous data that is non-negative is a common task in quantitative ecology. An example, and our motivation, is the weight of a given fish species in a fish trawl. The analysis task is complicated by the occurrence of exactly zero observations. It makes many statistical methods for continuous data inappropriate. In this paper we propose a model that extends a Tweedie generalised linear model. The proposed model exploits the fact that a Tweedie distribution is equivalent to the distribution obtained by summing a Poisson number of gamma random variables. In the proposed model, both the number of gamma variates, and their average size, are modelled separately. The model has a composite link and has a flexible mean-variance relationship that can vary with covariates. We illustrate the model, and compare it to other models, using data from a fish trawl survey in south-east Australia.  相似文献   

14.
Gorgonian corals are long-lived, slow-growing marine species dominating Mediterranean rocky bottoms. Endowed with complex morphologies they give a structure to the whole community, moreover, being efficient suspension feeders, they play a key role in plankton-benthos energy flow and CO2CO2 storage. Thus, the structure and the development of benthic, hard bottom communities are linked to gorgonian survival. The red coral Corallium rubrum (L. 1758) is a precious gorgonian endemic to the Mediterranean Sea. Harvested and traded world-wide since ancient times red coral is a clear example of overexploited marine resource. This species is structured into self-seeding, genetically differentiated populations, some of which, living in the shallower part of the species bathymetric distribution, was recently affected by anomalous mortality events linked to global climate change. The co-occurrence of overharvesting and mass mortality could dramatically affect such populations. Demographic population models, widely applied by conservation biologists to check population viability and to project population trends over time are fundamental to foster survival of such populations matching harvesting to population growth rates. Therefore we set out a dynamic model of a genetically differentiated red coral population living in shallow waters. This population is characterised by small/young, crowded colonies and high recruitment rate. On the basis of the size–age structure determined for this population, a static life-history table, in which survival and reproduction coefficients of the different size–age classes were reported, has been set out. Demographic data were included in a non-linear, discrete, age-structured dynamic model, based on a Leslie-Lewis transition matrix. Our field data indicate that the recruits-to-larvae ratio is actually density-dependent. Such dependence, positive for low and negative for high density values, was included into the model and the effect of colonies of different size–age classes on recruits-to-larvae ratio was considered to be proportional to the number of polyps they have. We applied such model to simulate the trends of the studied population under different increases of survival and life-span. As some populations of gorgonians actually show the dominance of sparse, big/old colonies and low recruitment rate, while others are characterised by crowded, small/young colonies and high recruitment rate, we simulated the shift from the former to the latter structure increasing survival and life-span. Our results suggest that a dramatic mortality increase of bigger–older colonies (due, in the case of red coral to overfishing) could have determined the population structure we found.  相似文献   

15.
《Ecological modelling》2004,171(1-2):85-102
Forests and savannas are the major ecotypes in humid tropical regions. Under present climatic conditions, forest is in a phase of natural expansion over savanna, but traditional human activities, especially fires, have strongly influenced the succession. We here present a new model, FORSAT, dedicated to the forest–savanna mosaic on a landscape scale and based on stochastic modelling of key processes (fire and succession cycle) and consistent with common field data. The model is validated by comparison between the qualitative emergent behaviour of the model and results of biogeographical field studies. Three types of forest succession are shown: progression of the forest edge, formation and coalescence of clumps in savanna and global afforestation of savanna. The parameters (frequency of savanna fires, climate and soil fertility) appear to have comparable effects and there is a sharp threshold between a forest edge progression scenario and the cluster formation one. Moreover, pioneer seed dispersal pattern and recruitment are determinant: peaked curves near a seed source and far dispersal combine to increase the fitness of the pioneers.  相似文献   

16.
When the distribution of species is limited by propagule supply, new populations may be initiated by seed addition, but identifying suitable sites for efficiently targeted seed addition remains a major challenge for restoration. In addition to the biotic or abiotic variables typically used in species distribution models, spatial isolation from conspecifics could help predict the suitability of unoccupied sites. Site suitability might be expected to increase with spatial isolation after other factors are accounted for, since isolation increases the chance that a site is unoccupied only because of propagule limitation. For two native annual forbs in Californian grasslands, we combined experimental seeding and niche modeling to ask whether suitability of unoccupied sites could be predicted by spatial variables (either distances from, or densities of, conspecific populations), either by themselves or in combination with niche models. We also asked whether experimental tests of these predictions held up not only in the short term (one year), but also in the longer term (three years). For Lasthenia californica, seed additions were only successful relatively near existing populations. For Lupinus nanus, seeding success was low and was positively related to the number of conspecifics within 1 km. For both species, a few previously unoccupied sites remained occupied three years after seeding, but this subset was not predictable based on either spatial or niche variables. Seed addition alone may be a limited means of native forb restoration if suitable unoccupied sites are either rare or unpredictable, or if they tend to be close to where the species already occurs.  相似文献   

17.
盐基离子随穿透雨和树干茎流的迁移成为森林元素输入的重要组成部分.在迁移过程中,冠层淋溶、树干冲刷等改变了盐基离子含量,而不同林型的林冠特征、树皮性质等存在差异,因此盐基离子含量在不同林型中可能存在差异对米槠次生林和杉木人工林穿透雨、树干茎流进行为期4年的监测,对比研究4种盐基离子(K+、Ca2+、Na+、Mg2+)浓度和输入量的动态特征.结果显示:(1)米槠次生林树干茎流Ca2+、Mg2+浓度显著低于杉木人工林而K+浓度显著高于杉木人工林;穿透雨除Na+浓度外均为米槠次生林显著高于杉木人工林.穿透雨和树干茎流Na+浓度林型差异不显著.(2)两种林型盐基离子季节动态变化基本一致,在雨季旱季各有一个峰值,雨季浓度普遍低于旱季.米槠次生林盐基离子浓度稳定性普遍高于杉木人工林.(3)分析盐基离子浓度与降雨强度的关系发现:Ca2+、K+、Mg2+浓度随雨量级的增加而降低,Na+浓度随雨量级的增加而增加.(4)观测期间米槠次生林穿透雨累计输入Ca2+、K+、Mg2+和Na+总量分别为47.97、35.17、7.15和12.94 kg/hm2,树干茎流累计输入Ca2+、K+、Mg2+和Na+总量分别为11.38、6.21、1.54和3.00 kg/hm2;杉木人工林穿透雨累计输入Ca2+、K+、Mg2+和Na+总量分别为47.24、26.63、6.43和11.55 kg/hm2,树干茎流累计输入Ca2+、K+、Mg2+和Na+总量分别为4.11、1.20、0.50和0.83 kg/hm2.米槠次生林的林内雨盐基离子输入量大于杉木人工林.总体而言,米槠次生林比杉木人工林有更高的养分输入,能更好地维持生态系统养分的供应;上述结果有助于进一步认识森林物质随水文过程的流动,可为人工林经营管理提供一定科学基础数据.(图6表1参36)  相似文献   

18.
For effective monitoring in social–ecological systems to meet needs for biodiversity, science, and humans, desired outcomes must be clearly defined and routes from direct to derived outcomes understood. The Arctic is undergoing rapid climatic, ecological, social, and economic changes and requires effective wildlife monitoring to meet diverse stakeholder needs. To identify stakeholder priorities concerning desired outcomes of arctic wildlife monitoring, we conducted in-depth interviews with 29 arctic scientists, policy and decision makers, and representatives of indigenous organizations and nongovernmental organizations. Using qualitative content analysis, we identified and defined desired outcomes and documented links between outcomes. Using network analysis, we investigated the structure of perceived links between desired outcomes. We identified 18 desired outcomes from monitoring and classified them as either driven by monitoring information, monitoring process, or a combination of both. Highly cited outcomes were make decisions, conserve, detect change, disseminate, and secure food. These reflect key foci of arctic monitoring. Infrequently cited outcomes (e.g., govern) were emerging themes. Three modules comprised our outcome network. The modularity highlighted the low strength of perceived links between outcomes that were primarily information driven or more derived (e.g., detect change, make decisions, conserve, or secure food) and outcomes that were primarily process driven or more derived (e.g., cooperate, learn, educate). The outcomes expand monitoring community and disseminate created connections between these modules. Key desired outcomes are widely applicable to social–ecological systems within and outside the Arctic, particularly those with wildlife subsistence economies. Attributes and motivations associated with outcomes can guide development of integrated monitoring goals for biodiversity conservation and human needs. Our results demonstrated the disconnect between information- and process-driven goals and how expansion of the monitoring community and improved integration of monitoring stakeholders will help connect information- and process-derived outcomes for effective ecosystem stewardship.  相似文献   

19.
捕食性瓢虫是重要的天敌昆虫,有利于害虫的生物防治.为查清西藏林芝地区农田瓢虫资源与种群现状,明确优势种类及种群动态和规律,对林芝不同生态区域的青稞、小麦、油菜3种作物农田开展瓢虫资源调查研究,同时选取固定样地定期进行种群动态分析.结果显示:林芝地区农田瓢虫分为2个亚科4个族10个属,共13种,其中11种为捕食性瓢虫.主要优势瓢虫种类为横斑瓢虫、多异瓢虫、二星瓢虫.其中横斑瓢虫在全部调查样地中均有分布,在农田中总体优势度指数、相对多度为最高.3种优势瓢虫在不同作物中种群动态变化规律存在差异,其中横斑瓢虫虫口密度长期高于其余优势瓢虫,且与蚜虫密度曲线有较为明显的重合现象.横斑瓢虫种群密度峰值主要集中在6月中旬至7月上旬,但在不同作物农田中具体峰值时期存在差异.可见,林芝地区农田不同种类瓢虫之间有较大数量差异,在不同生态区域与作物环境下具有不同的种群特征,但是优势瓢虫种类与种群规律较为明确,可用于农田蚜虫生物防治;结果可为保护当地重要昆虫资源及开展生物防治提供基础数据支撑.(图4表6参23)  相似文献   

20.
We introduce ten papers on sustainable resource dynamics. In addition, we provide analytical results on the effect of stochastic damages on optimal economic growth, the effects of habits and loss aversion on the cost-benefit discount rate, and the effect of a carbon budget and carbon capture and storage (CCS) on optimal investment in technical change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号