共查询到20条相似文献,搜索用时 15 毫秒
1.
森林土壤储存着全球陆地生态系统大约45%的碳,在维持全球碳平衡方面具有重要的作用。不断加剧的全球氮沉降对森林生态系统碳循环和碳吸存产生了深刻的影响,进而改变了森林生态系统的生产力和生物量积累。本文以欧洲和北美温带地区开展的有关氮沉降对森林生态系统影响的研究为基础,提炼出最可能决定加氮影响碳输入、输出效应方向和大小的因素:凋落物分解、细根周转、外生菌根真菌、土壤呼吸及可溶性有机碳淋失,并探讨了森林生态系统碳动态对氮沉降响应的不确定性。陆地生态系统碳氮循环密切相关,由于氮循环的复杂性,尽管以往碳循环研究都考虑了氮对碳循环的限制作用,但在碳氮循环耦合机理方面的研究还比较少见。在未来研究中,应通过探寻森林土壤碳氮相互作用特征,及土壤微生物、土壤酶等与土壤碳氮过程的互动机制,来增进氮沉降对森林碳储量和碳通量的理解。 相似文献
2.
The North Inlet Marsh-Estuarine System Model (NIMES) is a 19-compartment real-time deterministic ecosystem simulation model of intrasystem carbon flow and exchange between an estuary and adjacent coastal water. A complete sensitivity analysis of this model with regard to POM, DOM and nekton annual exchange and annual system net productivity was completed and the functional relationship between these system behaviors and the perturbed parameters were determined by regression techniques. Simulated POM annual exchange between the estuary and the sea was largely controlled by offshore POM concentration, water column respiration and the gross productivity of the marsh and water column flora. Simulated DOM annual estuarine-oceanic exchange was most sensitive to perturbations in the gross productivity and biomass changes in marsh flora and water column microbial DOM uptake. Simulated nekton exchange reflected a sensitivity to migratory behavior and subtidal benthic biomass changes. System annual net productivity as simulated by the model showed a high sensitivity to all model processes which affected component primary production and respiration. From this sensitivity analysis, a scheme is developed to evaluate research needs for further model development for the North Inlet ecosystem. 相似文献
3.
4.
A numerical model which simulates the decomposition of litter and mineralization and immobilization of P in the humus layer of a temperate forest (beech site of Solling) is described. The model takes into account the effect of moisture, temperature and C/N ratio. The simulated concentration of P in the effluent of the humus layer agrees well with the measured values. The model predicts an increase in the C/P ratio of the unde-composed litter with time and that there is no direct mineralization of P from litter without passing through a microbial body. The net rate of mineralization is, however, always positive with its highest peak in July. Maximum immobilization of P from solution occurs in June and the minimum in January.The model is stable against changes in the litter input, its C/P ratio and other initial conditions, but it is very sensitive to changes in the efficiency factor which represents the fraction of decomposed C incorporated into microbial tissue. This is a site-specific model but can be used for grassland or agricultural systems with changes in certain parameters. 相似文献
5.
采用森林生态系统定位观测及对比试验方法,对广州帽峰山常绿阔叶林和杉木人工林(16年)土壤(0~90 cm)有机碳、无机碳、总氮及有机氮的雨季月(5—10月)含量动态、垂直梯度变化特征及土壤湿度影响进行了对比观测研究。结果表明:常绿阔叶林及杉木林土壤有机碳、无机碳雨季月的剖面权均含量变化趋势均为倒S型,常绿阔叶林土壤有机碳剖面权均质量分数较相应杉木林大0.14%、土壤无机碳则小0.12%。常绿阔叶林土壤表层0~10、10~30 cm有机碳雨季月含量变差较杉木林分别高出1.83%、0.61%,土壤30~90 cm雨季月含量变差相对较小;常绿阔叶林土壤70~90 cm无机碳含量在5—8月份较高、杉木林则以土壤30~50 cm在5、6及10月含量较高;常绿阔叶林群落土壤0~20 cm的总氮雨季月含量均大于相应杉木林,植被吸收作用影响使土壤20 cm以下层的雨季各月总氮相对较低;常绿阔叶林土壤剖面雨季月无机氮含量随土层深度递减变化显著,即表层0~30 cm受矿化作用影响较大、深层30~90 cm则受植被吸收作用影响较大;而杉木林土壤剖面层无机氮含量则随雨季的月变化显著,5—7月份含量相对较小、8—10月份含量相对较大。常绿阔叶林土壤有机碳、总氮含量随土壤深度的增加均呈幂函数规律的递减,而杉木人工林土壤有机碳随土壤深度的增加呈对数函数规律的递减、土壤总氮含量则随土壤深度的增加呈二次函数规律的递减。在0~10 cm处,土壤有机碳和有机氮含量与土壤湿度呈负相关。 相似文献
6.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future. 相似文献
7.
Ching-Yu Huang Paul F. Hendrix Timothy J. Fahey Peter M. Groffman 《Ecological modelling》2010,221(20):2447-2457
Recent studies have reported that earthworm invasions alter native communities and impact nutrient cycling in terrestrial ecosystems. We developed a simulation model to evaluate the potential impacts of earthworm invasions on carbon dynamics, taking into consideration earthworm feeding strategies and priming effects on the microorganisms through their casting activities. Responses of carbon stocks (forest litter, soil organic matter, microbial biomass and earthworm populations) and carbon fluxes (litter decomposition, earthworm consumption, and microbial respiration) were used to evaluate an earthworm invasion of a forest ecosystem. Data from a northern temperate forest (Arnot Forest, New York) were adapted for model calibration and evaluation. Simulation results suggest that the impact and outcome of earthworm invasions are affected by pre-invasion resource availability (litter and soil organic matter), invasive earthworm assemblages (particularly feeding strategy), and invasion history (associated with earthworm population dynamics). The abovementioned factors may also determine invasion progress of earthworm species. The accuracy of the model could be improved by the addition of environmental modules (e.g., soil water regimes), precise parameters accounting for individual species attributes under different environmental conditions (e.g. utilization ability of different types of food resources), as well as earthworm population dynamics (size and structure) and interactions with predators and other invasive/indigenous species during the invasion progress. Such an earthworm invasion model could provide valuable evaluation of the complicated responses of carbon dynamics to earthworm invasions in a range of forest ecosystems, particularly under global change scenarios. 相似文献
8.
This paper introduces an innovative modelling strategy aimed at simulating the main terms of net forest carbon budget (net primary production, NPP and net ecosystem exchange, NEE) in Tuscany (Central Italy). The strategy is based on the preliminary calibration and application of parametric and bio-geochemical models (C-Fix and BIOME-BGC, respectively), which simulate the behaviour of forest ecosystems close to equilibrium condition (climax). Next, the ratio of actual over-potential tree volume is computed as an indicator of ecosystem distance from climax and is combined with the model outputs to estimate the NPP and NEE of real forests. The per-pixel application of the new modelling strategy was made possible by the collection of several data layers (maps of forest type and volume, daily meteorological data and monthly normalized difference vegetation index (NDVI) images for the years 1999–2003) which served to characterize the eco-climatic and forest features of the region. The obtained estimates of forest NPP and NEE were evaluated against ground measurements of accumulated woody biomass and net carbon exchange. The results of these experiments testify the good potential of the proposed strategy and indicate some problem areas which should be the subject of future research. 相似文献
9.
Johannes Järemo Göran Bengtsson 《Ecological modelling》2011,222(3):485-492
The age specific patterns of reproduction and mortality dictated by the life history of an organism apply to potential invaders as well as resident species of an area, but whether certain life history traits are more invasive than others is an unresolved issue. We analyze a two-population system of an invading and a resident species and test the effects of age on the probability to invade when the organisms are iteroparous or semelparous. The life history characteristics of the populations are projected in Leslie matrices, and the probability that the invader exceeds different population sizes is calculated by Monte Carlo analysis. The simulations show that (a) the invasion probability of an iteroparous organism increases with age until the individuals introduced are mature for first reproduction, and then becomes independent of age; (b) the invasion probability is more age sensitive for iteroparous organisms with high juvenile mortality (Type III organisms) than for those with a lower (Type I); (c) invading semelparous organisms are most affected by competition from resident organisms; (d) variations in vital rates of semelparous residents have greater influence on the invasion probability of an iteroparous organism than variations in traits of the invader. 相似文献
10.
Z. WangR.F. Grant M.A. ArainB.N. Chen N. CoopsR. Hember W.A. KurzD.T. Price G. StinsonJ.A. Trofymow J. Yeluripati Z. Chen 《Ecological modelling》2011,222(17):3236-3249
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models. 相似文献
11.
Weile Wang Kazuhito Ichii Hirofumi Hashimoto Andrew R. Michaelis Peter E. Thornton Beverly E. Law Ramakrishna R. Nemani 《Ecological modelling》2009
The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well. 相似文献
12.
G. Deckmyn H. Verbeeck M. Op de Beeck D. Vansteenkiste K. Steppe R. Ceulemans 《Ecological modelling》2008
A stand-scale forest model has been developed that dynamically simulates, besides carbon (C) and water (H2O) fluxes, wood tissue development from physiological principles. The forest stand is described as consisting of trees of different size cohorts (for example, dominant, co-dominant and suppressed trees), either of the same or of different species (deciduous or coniferous). Half-hourly C and H2O fluxes are modeled at the leaf, tree and stand level. In addition to total growth and yield, the model simulates the daily evolution of tracheid or vessel biomass and radius, parenchyma and branch development. From these data early and latewood biomass, wood tissue composition and density are calculated. Simulation of the labile C stored in the living tissues allows for simulation of trans-seasonal and trans-yearly effects, and improved simulations of long-term effects of environmental stresses on growth. A sensitivity analysis was performed to indicate the main parameters influencing simulated stem growth and wood quality at the tree and stand level. Case studies were performed for a temperate pine forest to illustrate the main model functioning and, more in particular, the simulation of the wood quality. The results indicate that the ANAFORE model is a useful tool for simultaneous analyses of wood quality development and forest ecosystem functioning. 相似文献
13.
Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model 总被引:3,自引:0,他引:3
Marie-France JutrasMina Nasr Mark CastonguayChristopher Pit Joseph H. PomeroyTodd P. Smith Cheng-fu ZhangCharles D. Ritchie Fan-Rui MengThomas A. Clair Paul A. Arp 《Ecological modelling》2011,222(14):2291-2313
Dissolved organic carbon (DOC) concentrations in south-western Nova Scotia streams, sampled at weekly to biweekly intervals, varied across streams from about 3 to 40 mg L−1, being highest mid-summer to fall, and lowest during winter to spring. A 3-parameter model (DOC-3) was proposed to project daily stream DOC concentrations and fluxes from modelled estimates for daily soil temperature and moisture, year-round, and in relation to basin size and wetness. The parameters of this model refer to (i) a basin-specific DOC release parameter “kDOC”, related to the wet- and open-water area percentages per basin, (ii) the lag time “τ” between DOC production and subsequent stream DOC emergence, related to the catchment area above the stream sampling location; and (iii) the activation energy “Ea”, to deal with the temperature effect on DOC production. This model was calibrated with the 1988-2006 DOC concentration data from three streams (Pine Marten, Moosepit Brook, and the Mersey River sampled at or near Kejimkujik National Park, or KNP), and was used to interpret the biweekly 1999-2003 DOC concentrations data (stream, ground and lake water, soil lysimeters) of the Pockwock-Bowater Watershed Project near Halifax, Nova Scotia. The data and the model revealed that the DOC concentrations within the streams were not correlated to the DOC concentrations within the soil- and groundwater, but were predictable based on (i) the hydrologically inferred weather-induced changes in soil moisture and temperature next to each stream, and (ii) the topographically inferred basin area and wet- and open-water area percentages associated with each stream (R2 = 0.53; RMSE = 3.5 mg L−1). Model-predicted fluxes accounted 74% of the hydrometrically determined DOC exports at KNP. 相似文献
14.
Understanding the effects of climate change on boreal forests which hold about 7% of the global terrestrial biomass carbon is a major issue. An important mechanism in boreal tree species is acclimatization to seasonal variations in temperature (cold hardiness) to withstand low temperatures during winter. Temperature drops below the hardiness level may cause frost damage. Increased climate variability under global and regional warming might lead to more severe frost damage events, with consequences for tree individuals, populations and ecosystems. We assessed the potential future impacts of changing frost regimes on Norway spruce (Picea abies L. Karst.) in Sweden. A cold hardiness and frost damage model were incorporated within a dynamic ecosystem model, LPJ-GUESS. The frost tolerance of Norway spruce was calculated based on daily mean temperature fluctuations, corresponding to time and temperature dependent chemical reactions and cellular adjustments. The severity of frost damage was calculated as a growth-reducing factor when the minimum temperature was below the frost tolerance. The hardiness model was linked to the ecosystem model by reducing needle biomass and thereby growth according to the calculated severity of frost damage. A sensitivity analysis of the hardiness model revealed that the severity of frost events was significantly altered by variations in the hardening rate and dehardening rate during current climate conditions. The modelled occurrence and intensity of frost events was related to observed crown defoliation, indicating that 6-12% of the needle loss could be attributed to frost damage. When driving the combined ecosystem-hardiness model with future climate from a regional climate model (RCM), the results suggest a decreasing number and strength of extreme frost events particularly in northern Sweden and strongly increasing productivity for Norway spruce by the end of the 21st century as a result of longer growing seasons and increasing atmospheric CO2 concentrations. However, according to the model, frost damage might decrease the potential productivity by as much as 25% early in the century. 相似文献
15.
《Ecological modelling》2007,200(1-2):45-58
Effective forest ecosystem-based management requires a thorough understanding of the interactions between anthropogenic and natural disturbance processes over larger spatial and temporal scales than stands and rotation ages. Because harvesting does not preclude fire, it is important to evaluate the combined effects of harvesting and fire on forest age structure, a coarse indicator of forest ecosystem state. We performed a sensitivity analysis of landscape scale effects of forest management (strategy, harvest rate and access cost) and fire regime (fire return interval and extent) in terms of combined impacts on forest stand age-class structure on a study area of 3.5 million hectares of boreal forest of Québec. A series of scenarios were simulated over 500 years and replicated 30 times using a previously reported spatially explicit landscape model. Within the parameter space of our sensitivity analysis, we found that harvest rate, fire return interval and management strategy were the most significant parameters affecting stand age-class distribution across the landscape. The former are not so surprising, given that they combine to produce an overall disturbance rate, but the latter shows that the resulting impact on age-class structure can be influenced to some degree through management objectives. A harvesting strategy of clearcutting for sustained timber supply, using a harvest rotation based on minimum merchantable age (approximately 100 years in this analysis), creates a trend for the stand age-class distribution away from the expected range of natural variation for the study area. Within the scope of our simulations, alternative management strategies with extended harvest rotation age proved the most robust forest management practice to absorb variations in fire regime. 相似文献
16.
《Ecological modelling》2005,186(2):178-195
A plant–soil nitrogen (N) cycling model was developed and incorporated into the Integrated BIosphere Simulator (IBIS) of Foley et al. [Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., Haxeltine, A., 1996. An integrated biosphere model of land surface process, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628]. In the N-model, soil mineral N regulates ecosystem carbon (C) fluxes and ecosystem C:N ratios. Net primary productivity (NPP) is controlled by feedbacks from both leaf C:N and soil mineral N. Leaf C:N determines the foliar and canopy photosynthesis rates, while soil mineral N determines the N availability for plant growth and the efficiency of biomass construction. Nitrogen controls on the decomposition of soil organic matter (SOM) are implemented through N immobilization and mineralization separately. The model allows greater SOM mineralization at lower mineral N, and conversely, allows greater N immobilization at higher mineral N. The model's seasonal and inter-annual behaviours are demonstrated. A regional simulation for Saskatchewan, Canada, was performed for the period 1851–2000 at a 10 km × 10 km resolution. Simulated NPP was compared with high-resolution (1 km × 1 km) NPP estimated from remote sensing data using the boreal ecosystem productivity simulator (BEPS) [Liu, J., Chen, J.M., Cihlar, J., Park, W.M., 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 44, 81–87]. The agreement between IBIS and BEPS, particularly in NPP spatial variation, was considerably improved when the N controls were introduced into IBIS. 相似文献
17.
Long-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession. 总被引:1,自引:0,他引:1
Jacqueline E Mohan James S Clark William H Schlesinger 《Ecological applications》2007,17(4):1198-1212
The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest succession. We examined how CO2 enrichment (+200 microL CO2/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the Duke Forest free-air CO2 enrichment (FACE) experiment in North Carolina, USA. We planted 2352 seedlings of 14 species in the low light forest understory and determined effects of elevated CO2 on individual plant growth, survival, and total sample biomass accumulation, an integrator of plant growth and survivorship over time, for six years. We used a hierarchical Bayes framework to accommodate the uncertainty associated with the availability of light and the variability in growth among individual plants. We found that most species did not exhibit strong responses to CO2. Ulmus alata (+21%), Quercus alba (+9.5%), and nitrogen-fixing Robinia pseudoacacia (+230%) exhibited greater mean annual relative growth rates under elevated CO2 than under ambient conditions. The effects of CO2 were small relative to variability within populations; however, some species grew better under low light conditions when exposed to elevated CO2 than they did under ambient conditions. These species include shade-intolerant Liriodendron tulipifera and Liquidambar styraciflua, intermediate-tolerant Quercus velutina, and shade-tolerant Acer barbatum, A. rubrum, Prunus serotina, Ulmus alata, and Cercis canadensis. Contrary to our expectation, shade-intolerant trees did not survive better with CO2 enrichment, and population-scale responses to CO2 were influenced by survival probabilities in low light. CO2 enrichment did not increase rates of sample biomass accumulation for most species, but it did stimulate biomass growth of shade-tolerant taxa, particularly Acer barbatum and Ulmus alata. Our data suggest a small CO2 fertilization effect on tree productivity, and the possibility of reduced carbon accumulation rates relative to today's forests due to changes in species composition. 相似文献
18.
S?nke Zaehle Stephen Sitch I Colin Prentice Jari Liski Wolfgang Cramer Markus Erhard Thomas Hickler Benjamin Smith 《Ecological applications》2006,16(4):1555-1574
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates. 相似文献
19.
Andrea L. Jaeger Miehls Doran M. Mason Kenneth A. Frank Ann E. Krause Scott D. Peacor William W. Taylor 《Ecological modelling》2009,220(22):3194
Exotic species invasion is widely considered to affect ecosystem structure and function. Yet, few contemporary approaches can assess the effects of exotic species invasion at such an inclusive level. Our research presents one of the first attempts to examine the effects of an exotic species at the ecosystem level in a quantifiable manner. We used ecological network analysis (ENA) and a social network analysis (SNA) method called cohesion analysis to examine the effect of zebra mussel (Dreissena polymorpha) invasion on the Oneida Lake, New York, USA, food web. We used ENA to quantify ecosystem function through an analysis of food web carbon transfer that explicitly incorporated flow over all food web paths (direct and indirect). The cohesion analysis assessed ecosystem structure through an organization of food web members into subgroups of strongly interacting predators and prey. Our analysis detected effects of zebra mussel invasion throughout the entire Oneida Lake food web, including changes in trophic flow efficiency (i.e., carbon flow among trophic levels) and alterations of food web organization (i.e., paths of carbon flow) and ecosystem activity (i.e., total carbon flow). ENA indicated that zebra mussels altered food web function by shunting carbon from pelagic to benthic pathways, increasing dissipative flow loss, and decreasing ecosystem activity. SNA revealed the strength of zebra mussel perturbation as evidenced by a reorganization of food web subgroup structure, with a decrease in importance of pelagic pathways, a concomitant rise of benthic pathways, and a reorganization of interactions between top predator fish. Together, these analyses allowed for a holistic understanding of the effects of zebra mussel invasion on the Oneida Lake food web. 相似文献
20.
Metson GS Hale RL Iwaniec DM Cook EM Corman JR Galletti CS Childers DL 《Ecological applications》2012,22(2):705-721
As urban environments dominate the landscape, we need to examine how limiting nutrients such as phosphorus (P) cycle in these novel ecosystems. Sustainable management of P resources is necessary to ensure global food security and to minimize freshwater pollution. We used a spatially explicit budget to quantify the pools and fluxes of P in the Greater Phoenix Area in Arizona, USA, using the boundaries of the Central Arizona-Phoenix Long-Term Ecological Research site. Inputs were dominated by direct imports of food and fertilizer for local agriculture, while most outputs were small, including water, crops, and material destined for recycling. Internally, fluxes were dominated by transfers of food and feed from local agriculture and the recycling of human and animal excretion. Spatial correction of P dynamics across the city showed that human density and associated infrastructure, especially asphalt, dominated the distribution of P pools across the landscape. Phosphorus fluxes were dominated by agricultural production, with agricultural soils accumulating P. Human features (infrastructure, technology, and waste management decisions) and biophysical characteristics (soil properties, water fluxes, and storage) mediated P dynamics in Phoenix. P cycling was most notably affected by water management practices that conserve and recycle water, preventing the loss of waterborne P from the ecosystem. P is not intentionally managed, and as a result, changes in land use and demographics, particularly increased urbanization and declining agriculture, may lead to increased losses of P from this system. We suggest that city managers should minimize cross-boundary fluxes of P to the city. Reduced P fluxes may be accomplished through more efficient recycling of waste, therefore decreasing dependence on external nonrenewable P resources and minimizing aquatic pollution. Our spatial approach and consideration of both pools and fluxes across a heterogeneous urban ecosystem increases the utility of nutrient budgets for city managers. Our budget explicitly links processes that affect P cycling across space with the management of other resources (e.g., water). A holistic management strategy that deliberately couples the management of P and other resources should be a priority for cities in achieving urban sustainability. 相似文献