首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory. • In NaNO3 and low Ca(NO3)2, EPS alleviates the NPs aggregation by steric repulsion. • In high Ca(NO3)2, EPS accelerates the NPs aggregation by exopolysaccharide bridging. • Ag2S NPs have stronger stability compared with Cit-Ag NPs in aqueous systems. Extracellular polymeric substances (EPS) in activated sludge from wastewater treatment plants (WWTPs) could affect interactions between nanoparticles and alter their migration behavior. The influence mechanisms of silver nanoparticles (Ag NPs) and silver sulfide nanoparticles (Ag2S NPs) aggregated by active EPS sludge were studied in monovalent or divalent cation solutions. The aggregation behaviors of the NPs without EPS followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The counterions aggravated the aggregation of both NPs, and the divalent cation had a strong neutralizing effect due to the decrease in electrostatic repulsive force. Through extended DLVO (EDLVO) model analysis, in NaNO3 and low-concentration Ca(NO3)2 (<10 mmol/L) solutions, EPS could alleviate the aggregation behaviors of Cit-Ag NPs and Ag2S NPs due to the enhancement of steric repulsive forces. At high concentrations of Ca(NO3)2 (10‒100 mmol/L), exopolysaccharide macromolecules could promote the aggregation of Cit-Ag NPs and Ag2S NPs by interparticle bridging. As the final transformation form of Ag NPs in water environments, Ag2S NPs had better stability, possibly due to their small van der Waals forces and their strong steric repulsive forces. It is essential to elucidate the surface mechanisms between EPS and NPs to understand the different fates of metal-based and metal-sulfide NPs in WWTP systems.  相似文献   

2.
Sequencing batch reactor (SBR) for enhanced biological phosphorus removal (EBPR) processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) in start-up stage. During the 34 days operation, SBR was set with temperature variation(0–5 d, 22±1°C; 6–13 d, 29±1°C; 14–34 d, 14±1°C). PAOs and GAOs were analyzed by fluorescent in situ hybridization (FISH), and intracellular polyphosphate granules were stained by Neisser-stain. The results showed that the influence of temperature shock on PAOs’ abundance was more serious than that on GAOs in the enriching process. Under sudden and substantially temperature variation, from 22±1°C to 29±1°C and then to 14±1°C, the domination of PAOs was deteriorated. After temperature shock, PAOs’ competitive advantages at low temperature that concluded in other study did not appear in our study. As mesophilic, GAOs (indicated by Alphaproteobacteria and Gammaproteobacteria) were more temperature adaptive and better grew and took the domination at 14±1°C in the end. In the competition process, organisms of tetrad forming organisms (TFOs)-like shape which were considered as typical GAOs, were observed. With the evidence of poly-P granules containing by Neisser-straining and result of FISH, these organisms of TFOs-like shape were better to be assumed as adaption state or a special self-protecting shape of PAOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号