首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Fly ash is the major coal combustion byproduct from thermal power plants. Considering its plant–nourishing constituents, its soil amendment in farmland is one of its promoted disposal methods. A substantial amount of heavy metals present in fly ash, which may leach out due to rainwater or irrigation water, may cause serious problem with long term use, especially to soil organisms. These metals may cause DNA damage through Reactive Oxygen Species (ROS) generation. In the present study, single cell gel electrophoresis [(SCGE) i.e., comet assay] was used to detect DNA damage in earthworm (Dichogaster curgensis) coelomocytes, following an in vitro exposure. Significant DNA damage was observed at the lowest concentration of fly ash leachate (6.25%) examined. DNA damage by all the tested concentrations (6.25%, 12.5%, 25%, 50%) differed significantly (p?<?0.001) from that of the negative control. Hence, long-term application of fly ash might prove harmful for earthworm populations.  相似文献   

2.
The bulk magnetic susceptibility of sediments from artificial and natural lakes around a large coal-fired power station in NE Spain has been measured. Higher magnetic susceptibility values are found in lake sediments located SE of the power station. This distribution of susceptibility values is compatible with environmental and meterological studies of emissions from the power station, which indicate a dominant SE plume direction. Mineralogical studies, by means of X-ray diffraction and scanning electron microscopy, show that the highest susceptibility values found in the sediments are caused by magnetic iron spinels in the fly ash that is transferred to the environment by the power station particulate emissions. After the quantitative mineralogical studies of fly ash, two different methods of fly ash content determination in the sediments have been devised, showing very similar results. The low background magnetic susceptibility of the sediments in the study area and the high susceptibility resulting from the input of magnetic fly ash particles allows both delimitation of the polluted area around the power station, and quantification of the fly ash input into the natural sediments.  相似文献   

3.
Ten sampling points were selected in Kanhan River, situated near the ash dump sites of Koradi Thermal Power Plant, Nagpur. The leaching of trace elements from fly ash dumps was experimentally determined by acid digestion, batch leaching and toxicity characteristic leaching procedure tests. Elemental concentrations in river water, sediment, plankton and five commonly prevailing fish species (Catla catla, Labeo bata, Cyprinus carpio, Cirrhinus reba, Puntius ticto) were determined using a Flame Atomic Absorption Spectrophotometer during the pre-monsoon and post-monsoon seasons. Metal concentrations (Cr, Mn, Zn, Cu, Fe, Ni, Cu and Pb) in river water were higher during the pre-monsoon season compared to the post-monsoon season. Zn (30.65?mg/kg) was observed to be the most predominant metal in plankton during the pre-monsoon season while, during the post-monsoon season, Fe (21.19?mg/kg) showed the maximum concentration. Muscles of C. catla had metal concentrations (Cr, Mn, Zn, Fe, Cu and Pb) above the permissible limits of Food and Agricultural Organization (FAO 1983) during the pre-monsoon season. Bioaccumulation factor (BAF) was found highest for Cr (37.5) in muscles of C. catla during the pre-monsoon season, while BAF was observed to be maximum in L. bata for Cu (28.09), which may be detrimental for human consumption.  相似文献   

4.
In the present study, a novel approach was used to control zero valent iron aggregation and separation problems by fixing zero valent iron (ZVI) on bentonite-fly ash pellets. For this purpose, porous low cost bentonite-fly ash (BFA) pellets with size of 2.00 cm in length and 0.35 cm in diameter were prepared and fixed with ZVI to manufacture zero valent iron bentonite-fly ash (ZVI-BFA) pellets. Importantly, unlike powdered adsorbents, ZVI-BFA can easily be separated from final effluents when exhausted without any disintegration. The performance of the developed novel adsorbent was investigated for the removal of Pb2+ and Cd2+ from aqueous media. At 100 mg·L–1 and 1 g adsorbent, a maximum of 89.5% of Cd2+ and 95.6% of Pb2+ was removed by ZVI-BFA as compared to 56% and 95% removal by BFA. At 200 mg·L–1, Cd2+ and Pb2+ removal by ZVI-BFA was 56% and 99.8% respectively as compared to only 28% and 96% by BFA. Further, the removal kinetics was best fitted for pseudo-second order model. The study provides the basis for improving the removal capacity of porous materials by iron fixation while taking separation ability into consideration.
  相似文献   

5.
● Both amorphous and crystalline silicon are completely separated from coal fly ash. ● Porous silica is synthesized out of coal fly ash. ● No residues is produced during the whole synthesis process. ● The one-step method to synthesize silica don’t need long-time reaction and aging. Ordered mesoporous silica materials exhibit enormous potential in industrial production. Since coal fly ash (CFA) is abundant in Si, it has become a green and promising way to utilize CFA by synthesizing porous silica materials. However, the stable crystalline structure of CFA limits the extraction of Si, and the residue is generated during the process of extracting Si. In this work, we proposed a no-residue method to synthesize ordered mesoporous silica out of CFA. Sodium carbonate (Na2CO3) was used to reconstruct the crystals of the CFA, and the calcined mixture then directly reacted with the precipitators. This method combined the process of Si extraction and porous material synthesis. In this method, no residue was generated and the silicon in both amorphous and crystalline phases of CFA was fully utilized. By this method, the extraction efficiency of Si was increased from 31.75% to nearly 100%. The as-synthesized mesoporous silica had a highly-ordered pore structure with a space group of la-3d, a surface area of 663.87 m2/g, a pore volume of 0.41 cm3/g, and an average pore diameter of 2.73 nm. The mechanism of crystalline transformation and material structure formation were systematically studied. This method provides a new idea to dispose of CFA and synthesize porous silica materials.  相似文献   

6.
• Washed MSWI fly ash was used as partial cement or sand substitute. • Sand replacing is beneficial for strength, while cement replacement reduces strength. • Cementing efficiency factor and mortar pore structure explain the strength results. • Health risk assessment was conducted for MSWI fly ash blended cement mortar. • CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.  相似文献   

7.
•PSBF performed better than PAC and PAM in CODCr removals. •PSBF was more insensitive to changing pH than PAC and PAM. •PAC could remove humic acid-like pollutants and dye particles. •PSBF was efficient in removing tryptophan-like pollutants from PPDW. •A secondary coagulation-flocculation process (PAC→PSBF) is proposed here. In our previous studies, several papermaking sludge-based flocculants (PSBFs) were synthesized from wood pulp papermaking sludge. The structure-activity relationships of the PSBFs have been investigated in simulated dye wastewater treatment, but their efficiencies in practical printing and dyeing wastewater (PPDW) treatment are unknown. Herein, an PSBF was prepared, and its performance is discussed in comparison to polyaluminium chloride (PAC) and polyacrylamide (PAM) in PPDW treatment. The PSBF was used in three ways: as an independent flocculant, as a PAC aid, or used to treat the effluent of the PAC system. The results indicated that adding PSBF alone produced similar color and chemical oxygen demand (CODCr) removals as the PAC system alone, but PSBF performed better than PAC when the pH of PPDW was higher than 7.0. Adding PSBF as a PAC aid improved the color, CODCr and turbidity removals, but the elimination efficiencies were slightly lower than those of the PAC+ PAM system. However, when PSBF was used as a flocculant to treat the effluent of the PAC system (PAC→PSBF), the effluent qualities were enhanced. Compared with the PAC system, the color and CODCr removals of PAC→PSBF system increased by 16.21% and 13.26%, respectively. The excitation and emission matrix fluorescence results indicated that PSBF removed tryptophan-like pollutants more efficiently than PAC. Considering the pH requirements of the subsequent bioreactor treatment in practice, the PAC→PSBF system were also investigated at the PPDW pH level of 7.0. Its maximum removal efficiencies of color, CODCr and turbidity were 90.17%, 32.60% and 82.50%, respectively.  相似文献   

8.
9.
ABSTRACT

Although life and land decisions are individual, driven by perceptions of reality, they reflect broader social processes. This research aims to understand relevant land-use change processes and the context within which land-use change occurs in the study area. For this, we employ grounded theory techniques and procedures to analyze narratives and life history interviews. Based on these narratives, we re-construct past land-use changes. Additionally, we identify structural conditions that drive change, several dimensions of change, including cultural-cognitive dimensions, and future discourses. The identified structural conditions motivate changes in concepts, actions, and practices, in land-use, and institutions, eventually leading to generational changes. Further research is needed to examine how the so-called structural conditions producing change varies in different settings and contexts. These findings can provide insight into certain patterns and knowledge that may contribute to community planning, policy design, and the conception of sustainable solutions with more grounded knowledge.  相似文献   

10.
Complexity and uncertainty play important roles in coastal management. Economic development may push the coastal system beyond its resilience thresholds as a result of interactions between environmental and socio-economic processes. The concepts in this paper link processes of system change, natural evolutionary processes observed in coastal zones, to processes of social evolution. An indicator based on calculating an ecological footprint for coastal zones is presented to guide decision-making in spatial and economic planning. The suggested indicator may support a range of methods linking economic valuation and environmental impact analysis.  相似文献   

11.
A novel method for the regeneration of cation exchange resins by aluminum (Al) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of Al3+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experiments were carried out to evaluate the characteristics of the Al form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on Al3+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.  相似文献   

12.
Our understanding of predator-prey systems has progressed in recent decades mainly due to the ability to test models in chemostats. This study aimed to develop a deterministic model using differential equations to reproduce the dynamics of the interaction of a predator and a prey in a two stage chemostat focusing in the proposed previous prey dependent model of Fussmann et al. (2000) [Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G., 2000. Crossing the Hopf bifurcation in a live predator-prey system. Science 290, 1358-1360]. The main problem with that model, but parameterized with the values obtained in this study (particularly the concentration of nutrient), was that the temporal trajectory of both the prey and the predator showed very high peaks that eventually led to the extinction of predator in all cases. In the same way the experimental time series obtained in this study does not exhibit the behavior predicted by the model of Fussman et al. On the contrary, as prey density increases, the system actually becomes more stable. Finally, the model that best explained the behavior of the predator and prey in the chemostat, at medium to high dilution rates, was the ratio dependent (algae-nitrogen) model with mutual interference measured in the chemostat (rotifer-alga) and that incorporated the age structure of the predator. Qualitative analysis of the dynamic behavior enabled evaluation of coexistence at equilibrium, coexistence on limit cycles, extinction of the predator or extinction of both populations.  相似文献   

13.
Summary. HPLC analysis of secondary metabolites represents an efficient tool for the studying of plant chemical diversity under different aspects: chemotaxonomy, metabolomics, adaptative responses to ecological factors, etc. Statistical analyses of HPLC databases, e.g. correlation analysis between HPLC peaks, can reliably provide information on the similarity/dissimilarity degrees between the chemical compounds. The similarities, corresponding to positive correlations, can be interpreted in terms of analogies between chemical structures, synchronic metabolisms or co-evolution of two compounds under certain environment conditions, etc. . In terms of metabolism, positive correlations can translate precursor-product relationships between compounds; negative correlations can be indicative of competitive processes between two compounds for a common precursor(s), enzyme(s) or substrate(s). Furthermore, the correlation analysis under a metabolic aspect can help to understand the biochemical origins of an observed polymorphism in a plant species. With the aim of showing this, we present a new approach based on a simplex mixture design, Scheffé matrix, which provides a correlation network making it possible to graphically visualise and to numerically model the metabolic trends between HPLC peaks. The principle of the approach consisted in mixing individual HPLC profiles representative of different phenotypes, then from a complete mixture set, a series of average profiles were calculated to provide a new database with a small variability. Several iterations of the mixture design provided a smoothed final database from which the relationships between the secondary metabolites were graphically and numerically analysed. These relationships were scale-dependent, namely either deterministic or systematic: the first consisted of a monotonic global trend covering the whole variation field of each metabolites’ pair; the second consisted of repetitive monotonic variations which gradually attenuated or intensified along a global trend. This new metabolomic approach was illustrated from 404 individual plants of Astragalus caprinus (Leguminoseae), belonging to four chemical phenotypes (chemotypes) on the basis of flavonoids analysed in their leaves. After smoothing, the relationships between flavonoids were numerically fitted using linear or polynomial models; therefore the co-response coefficients were easily interpreted in terms of metabolic affinities or competitions between flavonoids which would be responsible of the observed chemical polymorphism (the four chemotypes). The statistical validation of the approach was carried out by comparing Pearson correlations to Spearman correlations calculated from the smoothed and the crude HPLC database, respectively. Moreover, the signs of the smoothed relationships were finely supported by analogies and differences between the chemical structures of flavonoids, leading to fluent interpretation in relation to the pathway architecture.  相似文献   

14.
15.
Recent calls for the development of ecosystem-based fisheries management compel the development of resource management tools and linkages between existing fisheries management tools and other resource tools to enable assessment and management of multiple impacts on fisheries resources. In this paper, we describe the use of the Chesapeake Bay Fisheries Ecosystem Model (CBFEM), developed using the Ecopath with Ecosim (EwE) software, and the Chesapeake Bay Water Quality Model (WQM) to demonstrate how linkages between available modeling tools can be used to inform ecosystem-based natural resource management. The CBFEM was developed to provide strategic ecosystem information in support of fisheries management. The WQM was developed to assess impacts on water quality. The CBFEM was indirectly coupled with the WQM to assess the effects of water quality and submerged aquatic vegetation (SAV) on blue crabs. The output from two WQM scenarios (1985-1994), a baseline scenario representing actual nutrient inputs and another with reduced inputs based on a tributary management strategy, was incorporated into the CBFEM. The results suggested that blue crab biomass could be enhanced under management strategies (reduced nutrient input) when the effective search rate of blue crab young-of-the-year's (YOY's) predators or the vulnerability of blue crab YOY to its predators was adjusted by SAV. Such model linkages are important for incorporating physical and biological components of ecosystems in order to explore ecosystem-based fisheries management options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号