首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
• Recent progress of As-contaminated soil remediation technologies is presented. • Phytoextraction and chemical immobilization are the most widely used methods. • Novel remediation technologies for As-contaminated soil are still urgently needed. • Methods for evaluating soil remediation efficiency are lacking. • Future research directions for As-contaminated soil remediation are proposed. Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.  相似文献   

2.
• High hydrogen yield is recovered from thermal-alkaline pretreated sludge. • Separating SFL by centrifugation is better than filtration for hydrogen recovery. • The cascaded bioconversion of complex substrates in MECs are studied. • Energy and electron efficiency related to substrate conversion are evaluated. The aim of this study was to investigate the biohydrogen production from thermal (T), alkaline (A) or thermal-alkaline (TA) pretreated sludge fermentation liquid (SFL) in a microbial electrolysis cells (MECs) without buffer addition. Highest hydrogen yield of 36.87±4.36 mgH2/gVSS (0.026 m3/kg COD) was achieved in TA pretreated SFL separated by centrifugation, which was 5.12, 2.35 and 43.25 times higher than that of individual alkaline, thermal pretreatment and raw sludge, respectively. Separating SFL from sludge by centrifugation eliminated the negative effects of particulate matters, was more conducive for hydrogen production than filtration. The accumulated short chain fatty acid (SCFAs) after pretreatments were the main substrates for MEC hydrogen production. The maximum utilization ratio of acetic acid, propionic acid and n-butyric acid was 93.69%, 90.72% and 91.85%, respectively. These results revealed that pretreated WAS was highly efficient to stimulate the accumulation of SCFAs. And the characteristics and cascade bioconversion of complex substrates were the main factor that determined the energy efficiency and hydrogen conversion rate of MECs.  相似文献   

3.
• The three simulation factors caused various changes in both water and sediment. • Responses to simulations differed with the reported natural lakes and wetlands. • Al has dominant effects on sediment P release control among the three factors. • Adding sediment Al can be effective and safe under the simulated conditions. • Polyphosphates were not generated, while added phytate was rather stable. The effects of sediment aluminum (Al), organic carbon (OC), and dissolved oxygen (DO) on phosphorus (P) transformation, at the water-sediment interface of a eutrophic constructed lake, were investigated via a series of simulative experiments. The above three factors had various influences on dissolved P concentration, water pH, water and surface sediment appearance, and P fractions. Additions of Al had the greatest effect on suppressing P release, and the water pH remained alkaline in the water-sediment system under various OC and DO conditions. No dissolution of the added Al was detected. 31P-NMR characterization suggested that OC addition did not promote biological P uptake to polyphosphates under oxic conditions. The simulation result on the added phytate indicated the absence of phytate in the original lake sediment. As compared to the reported natural lakes and wetland, the water-sediment system of the constructed lake responded differently to some simulative conditions. Since Al, OC, and DO can be controlled with engineering methods, the results of this study provide insights for the practical site restorations.  相似文献   

4.
• Graphite bipolar electrodes act as an appropriate bed for the CDI process. • Activated carbon Coating improves the application of the electrodes. • CDI is an environmentally friendly method to apply for brackish water. • Initial concentration is the most important parameter in the CDI method. • CDI process in a batch-mode setup needs more development. This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination. Reductions of cost and energy compared with conventional desalination methods are the significant advantages of this approach. In this research, experiments were performed with a pair of graphite bipolar electrodes that were coated with a one-gram activated carbon solution. After completing preliminary tests, the impacts of four parameters on electrical conductivity reduction, including (1) the initial concentration of feed solution, (2) the duration of the tests, (3) the applied voltage, and (4) the pH of the solution, were examined. The results show that the maximum efficiency of electrical conductivity reduction in this laboratory-scale reactor is about 55%. Furthermore, the effects of the initial concentration of feed solution are more significant than the other parameters. Thus, using the capacitive deionization method for water desalination with low and moderate salt concentrations (i.e., brackish water) is proposed as an affordable method. Compared with conventional desalination methods, capacitive deionization is not only more efficient but also potentially more environmentally friendly.  相似文献   

5.
• Nanowire-assisted LEEFT is applied for water disinfection with low voltages. • LEEFT inactivates bacteria by disrupting cell membrane through electroporation. • Multiple electrodes and device configurations have been developed for LEEFT. • The LEEFT is low-cost, highly efficient, and produces no DBPs. • The LEEFT can potentially be applicable for water disinfection at all scales. Water disinfection is a critical step in water and wastewater treatment. The most widely used chlorination suffers from the formation of carcinogenic disinfection by-products (DBPs) while alternative methods (e.g., UV, O3, and membrane filtration) are limited by microbial regrowth, no residual disinfectant, and high operation cost. Here, a nanowire-enabled disinfection method, locally enhanced electric field treatment (LEEFT), is introduced with advantages of no chemical addition, no DBP formation, low energy consumption, and efficient microbial inactivation. Attributed to the lightning rod effect, the electric field near the tip area of the nanowires on the electrode is significantly enhanced to inactivate microbes, even though a small external voltage (usually<5 V) is applied. In this review, after emphasizing the significance of water disinfection, the theory of the LEEFT is explained. Subsequently, the recent development of the LEEFT technology on electrode materials and device configurations are summarized. The disinfection performance is analyzed, with respect to the operating parameters, universality against different microorganisms, electrode durability, and energy consumption. The studies on the inactivation mechanisms during the LEEFT are also reviewed. Lastly, the challenges and future research of LEEFT disinfection are discussed.  相似文献   

6.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

7.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

8.
• A model-free sewer-WWTP integrated control was proposed. • A dynamic discrete control based on the water level was developed. • The approach could improve the sewer operation against flow fluctuation. • The approach could increase transport capacity and enhance pump efficiency. This study aims to propose a multi-point integrated real-time control method based on discrete dynamic water level variations, which can be realized only based on the programmable logic controller (PLC) system without using a complex mathematical model. A discretized water level control model was developed to conduct the real-time control based on data-automation. It combines the upstream pumping stations and the downstream influent pumping systems of wastewater treatment plant (WWTP). The discretized water level control method can regulate dynamic wastewater pumping flow of pumps following the dynamic water level variation in the sewer system. This control method has been successfully applied in practical integrated operations of sewer-WWTP following the sensitive flow disturbances of the sewer system. The operational results showed that the control method could provide a more stabilized regulate pumping flow for treatment process; it can also reduce the occurrence risk of combined sewer overflow (CSO) during heavy rainfall events by increasing transport capacity of pumping station and influent flow in WWTP, which takes full advantage of storage space in the sewer system.  相似文献   

9.
• Complete CT degradation was achieved by employing HA to CP/Fe(II)/FA process. • Quantitative detection of Fe(II) regeneration and HO• production was investigated. • Benzoic acid outcompeted FA for the reaction with HO•. • CO2 was the dominant reductive radical for CT removal. • Effects of solution matrix on CT removal were conducted. Hydroxyl radicals (HO•) show low reactivity with perchlorinated hydrocarbons, such as carbon tetrachloride (CT), in conventional Fenton reactions, therefore, the generation of reductive radicals has attracted increasing attention. This study investigated the enhancement of CT degradation by the synergistic effects of hydroxylamine (HA) and formic acid (FA) (initial [CT] = 0.13 mmol/L) in a Fe(II) activated calcium peroxide (CP) Fenton process. CT degradation increased from 56.6% to 99.9% with the addition of 0.78 mmol/L HA to the CP/Fe(II)/FA/CT process in a molar ratio of 12/6/12/1. The results also showed that the presence of HA enhanced the regeneration of Fe(II) from Fe(III), and the production of HO• increased one-fold when employing benzoic acid as the HO• probe. Additionally, FA slightly improves the production of HO•. A study of the mechanism confirmed that the carbon dioxide radical (CO2), a strong reductant generated by the reaction between FA and HO•, was the dominant radical responsible for CT degradation. Almost complete CT dechlorination was achieved in the process. The presence of humic acid and chloride ion slightly decreased CT removal, while high doses of bicarbonate and high pH inhibited CT degradation. This study helps us to better understand the synergistic roles of FA and HA for HO• and CO2 generation and the removal of perchlorinated hydrocarbons in modified Fenton systems.  相似文献   

10.
• Principles and methods for fluorescence EEM are systematically outlined. • Fluorophore peak/region/component and energy information can be extracted from EEM. • EEM can fingerprint the physical/chemical/biological properties of DOM in MBRs. • EEM is useful for tracking pollutant transformation and membrane retention/fouling. • Improvements are still needed to overcome limitations for further studies. The membrane bioreactor (MBR) technology is a rising star for wastewater treatment. The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter (DOM) in the system. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, a powerful tool for the rapid and sensitive characterization of DOM, has been extensively applied in MBR studies; however, only a limited portion of the EEM fingerprinting information was utilized. This paper revisits the principles and methods of fluorescence EEM, and reviews the recent progress in applying EEM to characterize DOM in MBR studies. We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity, wavelength regional distribution, and spectral deconvolution (giving fluorescent component loadings/scores), and discussed how to use the information to interpret the chemical compositions, physiochemical properties, biological activities, membrane retention/fouling behaviors, and migration/transformation fates of DOM in MBR systems. In addition to conventional EEM indicators, novel fluorescent parameters are summarized for potential use, including quantum yield, Stokes shift, excited energy state, and fluorescence lifetime. The current limitations of EEM-based DOM characterization are also discussed, with possible measures proposed to improve applications in MBR monitoring.  相似文献   

11.
• Annual AOCs in MBR effluents were stable with small increase in warmer seasons. • Significant increase in AOC levels of tertiary effluents were observed. • Coagulation in prior to ozonation can reduce AOC formation in tertiary treatment. • ∆UV254 and SUVA can be surrogates to predict the AOC changes during ozonation. As water reuse development has increased, biological stability issues associated with reclaimed water have gained attention. This study evaluated assimilable organic carbon (AOC) in effluents from a full-scale membrane biological reactor (MBR) plant and found that they were generally stable over one year (125–216 µg/L), with slight increases in warmer seasons. After additional tertiary treatments, the largest increases in absolute and specific AOCs were detected during ozonation, followed by coagulation-ozonation and coagulation. Moreover, UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation. Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone. Finally, the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.  相似文献   

12.
•Wood and its reassemblies are ideal substrates to develop novel photocatalysts. •Synthetic methods and mechanisms of wood-derived photocatalysts are summarized. •Advances in wood-derived photocatalysts for organic pollutant removal are summed up. •Metal doping, morphology control and semiconductor coupling methods are highlighted. •Structure-activity relationship and catalytic mechanism of photocatalysts are given. Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years, because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials. Herein, we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants. This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood. The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants (such as 1D fiber, 2D films and 3D porous gels) using advanced nanotechnology including sol-gel method, hydrothermal method, magnetron sputtering method, dipping method and so on. Next, we highlight typical approaches that improve the photocatalytic property, including metal element doping, morphology control and semiconductor coupling. Also, the structure-activity relationship of photocatalysts is emphasized. Finally, a brief summary and prospect of wood-derived photocatalysts is provided.  相似文献   

13.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

14.
• Swimming pool water was studied for DBPs upon exposure to additional stimulants. • DBP formation could be induced by residual chlorine and extended incubation. • Urine led to a massive formation of chloroform with additional stimulants. • Reactions between chlorine and anthropogenic organics were slow and long-lasting. • Urine control and air ventilation should be on the priority list for pool management. Anthropogenic organics are known to be responsible for the formation of harmful disinfection by-products (DBPs) in swimming pool water (SPW). The research explored an important scenario of SPW with no additional anthropogenic organic input. With stimulations by residual chlorine or additional chlorine and extended incubation, the formation of DBPs, especially chloroform, was significantly induced. Similar observations were found by investigating synthetic SPW made with sweat and urine. The presence of urine led to a massive formation of chloroform, as noted by an approximate 19-fold increase after 165-day incubation with a shock chlorine dose. The research suggests that consistent residual chlorine and long water retention as two typical features of SPW could unlock the DBP formation potential of anthropogenic organics. Thus, limiting the introduction of anthropogenic organics may not have an immediate effect on reducing DBP levels, because their reactions with chlorine can be slow and long-lasting. Pool management should prioritize on control of urine and improving air ventilation. This work is useful to deepen understandings about DBP formation in SPW and provide implications for pool management and prospective legislation.  相似文献   

15.
• A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.  相似文献   

16.
• An integrated method, called PHDVPSS, was proposed for treating DCS. • The PHDVPSS method showed superior performance compared to conventional method. • Using the method, water content (%) of DCS decreased from 300 to<150 in 3 days. • The 56-day UCS from this method is 12‒17 times higher than conventional method. • Relative to PC, GGBS-MgO binder yielded greater reduction in the leachability. To more efficiently treat the dredged contaminated sediment (DCS) with a high water content, this study proposes an integrated method (called PHDVPSS) that uses the solidifying/stabilizing (S/S) agents and prefabricated horizontal drain (PHD) assisted by vacuum pressure (VP). Using this method, dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved. A series of model tests was conducted to investigate the effectiveness of the proposed method. Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement (PC) directly without prior dewatering. The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12‒17 times higher than that by the conventional S/S method. DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age. The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC, because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn. The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder, which resulted in higher mechanical strength and higher Zn stabilization efficiency.  相似文献   

17.
• Wide occurrence of Cr(VI) in US source drinking water. • A strong dependence of occurrence on groundwater sources. • Elucidate Redox and equilibrium chemistry of Cr(VI). • Sn(II)-based and TiO2-based reductive treatments hold extreme promise. • Key challenges include residual waste, Cr(VI) re-generation and socioeconomic drivers. Chromium (Cr) typically exists in either trivalent and hexavalent oxidation states in drinking water, i.e., Cr(III) and Cr(VI), with Cr(VI) of particular concern in recent years due to its high toxicity and new regulatory standards. This Account presented a critical analysis of the sources and occurrence of Cr(VI) in drinking water in the United States, analyzed the equilibrium chemistry of Cr(VI) species, summarized important redox reaction relevant to the fate of Cr(VI) in drinking water, and critically reviewed emerging Cr(VI) treatment technologies. There is a wide occurrence of Cr(VI) in US source drinking water, with a strong dependence on groundwater sources, mainly due to naturally weathering of chromium-containing aquifers. Challenges regarding traditional Cr(VI) treatment include chemical cost, generation of secondary waste and inadvertent re-generation of Cr(VI) after treatment. To overcome these challenges, reductive Cr(VI) treatment technologies based on the application of stannous tin or electron-releasing titanium dioxide photocatalyst hold extreme promise in the future. To moving forward in the right direction, three key questions need further exploration for the technology implementation, including effective management of residual waste, minimizing the risks of Cr(VI) re-occurrence downstream of drinking water treatment plant, and promote the socioeconomic drivers for Cr(VI) control in the future.  相似文献   

18.
• Quantitative global ARGs profile in dialysis water was investigated. • Totally 35 ARGs were found in the dialysis treatment train. • 29 ARGs (highest) were found in carbon filtration effluent. erm and mtrD-02 occurred in the final effluent. • The effluent was associated with health risks even after RO treatment. Dialysis water is directly related to the safety of hemodialysis patients, thus its quality is generally ensured by a stepwise water purification cascade. To study the effect of water treatment on the presence of antibiotic resistance genes (ARGs) in dialysis water, this study used propidium monoazide (PMA) in conjunction with high throughput quantitative PCR to analyze the diversity and abundance of ARGs found in viable bacteria from water having undergone various water treatment processes. The results indicated the presence of 35 ARGs in the effluents from the different water treatment steps. Twenty-nine ARGs were found in viable bacteria from the effluent following carbon filtration, the highest among all of the treatment processes, and at 6.96 Log (copies/L) the absolute abundance of the cphA gene was the highest. Two resistance genes, erm (36) and mtrD-02, which belong to the resistance categories macrolides-lincosamides-streptogramin B (MLSB) and other/efflux pump, respectively, were detected in the effluent following reverse osmosis treatment. Both of these genes have demonstrated the potential for horizontal gene transfer. These results indicated that the treated effluent from reverse osmosis, the final treatment step in dialysis-water production, was associated with potential health risks.  相似文献   

19.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

20.
• The sources and pathways of pesticides into stormwater runoff were diverse. • Factors affecting pesticides in stormwater runoff were critically reviewed. • Pesticides mitigation strategies were included in this review. • The current knowledge gap of the pesticides in stormwater runoff was identified. Recently, scientific interest has grown in harvesting and treating stormwater for potable water use, in order to combat the serious global water scarcity issue. In this context, pesticides have been identified as the key knowledge gap as far as reusing stormwater is concerned. This paper reviewed the presence of pesticides in stormwater runoff in both rural and urban areas. Specifically, the sources of pesticide contamination and possible pathways were investigated in this review. Influential factors affecting pesticides in stormwater runoff were critically identified as: 1) characteristics of precipitation, 2) properties of pesticide, 3) patterns of pesticides use, and 4) properties of application surface. The available pesticide mitigation strategies including best management practice (BMP), low impact development (LID), green infrastructure (GI) and sponge city (SC) were also included in this paper. In the future, large-scale multi-catchment studies that directly evaluate pesticide concentrations in both urban and rural stormwater runoff will be of great importance for the development of effective pesticides treatment approaches and stormwater harvesting strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号