首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• The total organic pollutant concentrations in sediment were 27.4-1620 ng/g. • The phenol concentrations were relatively high in the sediment of the Dianchi Lake. • Average total concentrations decreased as follows: Caohai>Waihai>Haigeng Dam. • 1,4-dichlorobenzene, 3- or 4-methylphenol, 1,2,4-trichlorobenzene might be risks. Organic pollutants are widespread environmental pollutants with high toxicity, persistence, and bioaccumulation. Our aim was to investigate the distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China. Nineteen surface sediment samples were collected from the Dianchi Lake, and 40 types of organic pollutants were analyzed via gas chromatography–mass spectrometry. The total organic pollutant concentrations in the surface sediment of the Dianchi Lake varied from 27.4 to 1.62 × 103 ng/g. The concentrations of phenols were much higher than those in other water bodies but still within a controllable range, whereas the concentrations of the other organic pollutant classes were similar or even lower. The detection ratio of 3- or 4-methylphenol was the highest (100.00%) among the pollutants. The average total organic pollutant concentrations decreased in the following order: Caohai (540 ng/g)>the middle of Waihai (488 ng/g)>the edge of Waihai (351 ng/g)>Haigeng Dam (90.4 ng/g). Pearson analysis showed a strong correlation among 1-methylnaphthalene, 2-methylnaphthalene, 1,3-dinitronaphthalene, and 1,4-dinitronaphthalene (p<0.01). Caohai, the north lakeshore of Waihai and the south of Waihai showed higher risk because of high concentration; meanwhile, 1,4-dichlorobenzene, 3- or 4-methylphenol and 1,2,4-trichlorobenzene were more likely to cause risks.  相似文献   

2.
• An innovative bubble column tower BPE was designed to treat the black-odorous water. • PO43, S2 and turbidity were removed, and dissolved oxygen was enriched in the BPE. • An aluminum bipolar electrode gave the best oxygen enrichment and pollutant removal. • Changes of microorganisms confirmed the improvement in water quality achieved. The large amount of municipal wastewater discharged into urban rivers sometimes exceeds the rivers’ self-purification capacity leading to black-odorous polluted water. Electro-flocculation has emerged as a powerful remediation technology. Electro-flocculation in a bubble column tower with a bipolar electrode (BPE) was tested in an attempt to overcome the high resistance and weak gas-floatation observed with a monopolar electrode (MPE) in treating such water. The BPE reactor tested had a Ti/Ta2O5-IrO2 anode and a graphite cathode with an iron or aluminum bipolar electrode suspended between them. It was tested for its ability to reduce turbidity, phosphate and sulphion and to increase the concentration of dissolved oxygen. The inclusion of the bipolar electrode was found to distinctly improved the system’s conductivity. The system’s electro-flocculation and electrical floatation removed turbidity, phosphate and sulphion completely, and the dissolved oxygen level improved from 0.29 to 6.28 mg/L. An aluminum bipolar electrode performed better than an iron one. Changes in the structure of the microbial community confirmed a significant improvement in water quality.  相似文献   

3.
• The three simulation factors caused various changes in both water and sediment. • Responses to simulations differed with the reported natural lakes and wetlands. • Al has dominant effects on sediment P release control among the three factors. • Adding sediment Al can be effective and safe under the simulated conditions. • Polyphosphates were not generated, while added phytate was rather stable. The effects of sediment aluminum (Al), organic carbon (OC), and dissolved oxygen (DO) on phosphorus (P) transformation, at the water-sediment interface of a eutrophic constructed lake, were investigated via a series of simulative experiments. The above three factors had various influences on dissolved P concentration, water pH, water and surface sediment appearance, and P fractions. Additions of Al had the greatest effect on suppressing P release, and the water pH remained alkaline in the water-sediment system under various OC and DO conditions. No dissolution of the added Al was detected. 31P-NMR characterization suggested that OC addition did not promote biological P uptake to polyphosphates under oxic conditions. The simulation result on the added phytate indicated the absence of phytate in the original lake sediment. As compared to the reported natural lakes and wetland, the water-sediment system of the constructed lake responded differently to some simulative conditions. Since Al, OC, and DO can be controlled with engineering methods, the results of this study provide insights for the practical site restorations.  相似文献   

4.
• Toxicity-oriented water quality monitoring was proposed. • Toxicity-oriented water quality engineering control was proposed. • Future issues to the proposition were discussed. The fundamental goal of water quality engineering is to ensure water safety to humans and the environment. Traditional water quality engineering consists of monitoring, evaluation, and control of key water quality parameters. This approach provides some vital insights into water quality, however, most of these parameters do not account for pollutant mixtures – a reality that terminal water users face, nor do most of these parameters have a direct connection with the human health safety of waters. This puts the real health-specific effects of targeted water pollutant monitoring and engineering control in question. To focus our attention to one of the original goals of water quality engineering – human health and environmental protection, we advocate here the toxicity-oriented water quality monitoring and control. This article presents some of our efforts toward such goal. Specifically, complementary to traditional water quality parameters, we evaluated the water toxicity using high sensitivity toxicological endpoints, and subsequently investigated the performance of some of the water treatment strategies in modulating the water toxicity. Moreover, we implemented the toxicity concept into existing water treatment design theory to facilitate toxicity-oriented water quality control designs. Suggestions for the next steps are also discussed. We hope our work will intrigue water quality scientists and engineers to improve and embrace the mixture water pollutant and toxicological evaluation and engineering control.  相似文献   

5.
• Annual AOCs in MBR effluents were stable with small increase in warmer seasons. • Significant increase in AOC levels of tertiary effluents were observed. • Coagulation in prior to ozonation can reduce AOC formation in tertiary treatment. • ∆UV254 and SUVA can be surrogates to predict the AOC changes during ozonation. As water reuse development has increased, biological stability issues associated with reclaimed water have gained attention. This study evaluated assimilable organic carbon (AOC) in effluents from a full-scale membrane biological reactor (MBR) plant and found that they were generally stable over one year (125–216 µg/L), with slight increases in warmer seasons. After additional tertiary treatments, the largest increases in absolute and specific AOCs were detected during ozonation, followed by coagulation-ozonation and coagulation. Moreover, UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation. Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone. Finally, the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.  相似文献   

6.
• Hydrothermal treatment can greatly improve resource recovery from sewage sludge. • tCOD removal during WO was ~55% compared with ~23% after TH. • TOC solubilization during hydrothermal treatment followed first-order kinetics. • Solids and carbon balance confirmed loss of organics during thermal hydrolysis. • Reaction pathways for thermal hydrolysis and wet oxidation are proposed. We evaluated the effect of hydrothermal pretreatments, i.e., thermal hydrolysis (TH) and wet oxidation (WO) on sewage sludge to promote resource recovery. The hydrothermal processes were performed under mild temperature conditions (140°C–180°C) in a high pressure reactor. The reaction in acidic environment (pH= 3.3) suppressed the formation of the color imparting undesirable Maillard’s compounds. The oxidative conditions resulted in higher volatile suspended solids (VSS) reduction (~90%) and chemical oxygen demand (COD) removal (~55%) whereas TH caused VSS and COD removals of ~65% and ~27%, respectively at a temperature of 180°C. During TH, the concentrations of carbohydrates and proteins in treated sludge were 400–1000 mg/L and 1500–2500 mg/L, respectively. Whereas, WO resulted in solids solubilization followed by oxidative degradation of organics into smaller molecular weight carboxylic acids such as acetic acid (~400–500 mg/L). Based on sludge transformation products generated during the hydrothermal pretreatments, simplified reaction pathways are predicted. Finally, the application of macromolecules (such as proteins), VFAs and nutrients present in the treated sludge are also discussed. The future study should focus on the development of economic recovery methods for various value-added compounds.  相似文献   

7.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

8.
• A pilot study was conducted for drinking water treatment using loose NF membranes. • The membranes had very high rejection of NOM and medium rejection of Ca2+/Mg2+. • Organic fouling was dominant and contribution of inorganic fouling was substantial. • Both organic and inorganic fouling had spatial non-uniformity on membrane surface. • Applying EDTA at basic conditions was effective in removing membrane fouling. Nanofiltration (NF) using loose membranes has a high application potential for advanced treatment of drinking water by selectively removing contaminants from the water, while membrane fouling remains one of the biggest problems of the process. This paper reported a seven-month pilot study of using a loose NF membrane to treat a sand filtration effluent which had a relatively high turbidity (~0.4 NTU) and high concentrations of organic matter (up to 5 mg/L as TOC), hardness and sulfate. Results showed that the membrane demonstrated a high rejection of TOC (by>90%) and a moderately high rejection of two pesticides (54%–82%) while a moderate rejection of both calcium and magnesium (~45%) and a low rejection of total dissolved solids (~27%). The membrane elements suffered from severe membrane fouling, with the membrane permeance decreased by 70% after 85 days operation. The membrane fouling was dominated by organic fouling, while biological fouling was moderate. Inorganic fouling was mainly caused by deposition of aluminum-bearing substances. Though inorganic foulants were minor contents on membrane, their contribution to overall membrane fouling was substantial. Membrane fouling was not uniform on membrane. While contents of organic and inorganic foulants were the highest at the inlet and outlet region, respectively, the severity of membrane fouling increased from the inlet to the outlet region of membrane element with a difference higher than 30%. While alkaline cleaning was not effective in removing the membrane foulants, the use of ethylenediamine tetraacetate (EDTA) at alkaline conditions could effectively restore the membrane permeance.  相似文献   

9.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

10.
• TPhP showed faster and higher sorption on biochars than TPPO. • Pyrochars had higher sorption capacity for TPPO than hydrochar. • Hydrophobic interactions dominated TPhP sorption by biochars. • The π-π EDA and electrostatic interactions are involved in sorption. Aromatic organophosphate flame retardant (OPFR) pollutants and biochars are commonly present and continually released into soils due to their increasingly wide applications. In this study, for the first time, the sorption of OPFRs on biochars was investigated. Although triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) have similar molecular structures and sizes, TPhP exhibited much faster and higher sorption than TPPO due to its stronger hydrophobicity, suggesting the dominant role of hydrophobic interactions in TPhP sorption. The π-π electron donor–acceptor (EDA) interactions also contributed to the sorption process, as suggested by the negative correlation between the sorption capacity of the aromatic OPFRs and the aromatic index (H/C atomic ratios) of biochar. Density functional theory calculations further showed that one benzene ring of aromatic OPFRs has no electrons, which may interact with biochar via π-π EDA interactions. The electrostatic attraction between the protonated P = O in OPFRs and the negatively charged biochar was found to occur at pH below 7. This work provides insights into the sorption behaviors and mechanisms of aromatic OPFRs by biochars.  相似文献   

11.
• Emerging titanium coagulation was high-efficient for algae-laden water treatment. • Polytitanium coagulation was capable for both algae and organic matter removal. • Surface water purification was improved by around 30% due to algae inclusion. • Algae functioned as flocculant aid to assist polytitanium coagulation. • Algae could enhance charge neutralization capability of polytitanium coagulant. Titanium-based coagulation has proved to be effective for algae-laden micro-polluted water purification processes. However, the influence of algae inclusion in surface water treatment by titanium coagulation is barely reported. This study reports the influence of both Microcystis aeruginosa and Microcystis wesenbergii in surface water during polytitanium coagulation. Jar tests were performed to evaluate coagulation performance using both algae-free (controlled) and algae-laden water samples, and floc properties were studied using a laser diffraction particle size analyzer for online monitoring. Results show that polytitanium coagulation can be highly effective in algae separation, removing up to 98% from surface water. Additionally, the presence of algae enhanced organic matter removal by up to 30% compared to controlled water containing only organic matter. Polytitanium coagulation achieved significant removal of fluorescent organic materials and organic matter with a wide range of molecular weight distribution (693–4945 Da) even in the presence of algae species in surface water. The presence of algae cells and/or algal organic matter is likely to function as an additional coagulant or flocculation aid, assisting polytitanium coagulation through adsorption and bridging effects. Although the dominant coagulation mechanisms with polytitanium coagulant were influenced by the coagulant dosage and initial solution pH, algae species in surface water could enhance the charge neutralization capability of the polytitanium coagulant. Algae-rich flocs were also more prone to breakage with strength factors approximately 10% lower than those of algae-free flocs. Loose structure of the flocs will require careful handling of the flocs during coagulation-sedimentation-filtration processes.  相似文献   

12.
• Selective molecularly imprinted polymer (MIP) binding gel was prepared. • MIP-DGT showed excellent uptake performance for antibiotics. • In situ measurement of antibiotics in wastewaters via MIP-DGT was developed. • The MIP-DGT method was robust, reliable, and highly sensitive. Urban wastewater is one of main sources for the introduction of antibiotics into the environment. Monitoring the concentrations of antibiotics in wastewater is necessary for estimating the amount of antibiotics discharged into the environment through urban wastewater treatment systems. In this study, we report a novel diffusive gradient in thin films (DGT) method based on molecularly imprinted polymers (MIPs) for in situ measurement of two typical antibiotics, fluoroquinolones (FQs) and sulfonamides (SAs) in urban wastewater. MIPs show specific adsorption toward their templates and their structural analogs, resulting in the selective uptake of the two target antibiotics during MIP-DGT deployment. The uptake performance of the MIP-DGTs was evaluated in the laboratory and was relatively independent of solution pH (4.0–9.0), ionic strength (1–750 mmol/L), and dissolved organic matter (DOM, 0–20 mg/L). MIP-DGT samplers were tested in the effluent of an urban wastewater treatment plant for field trials, where three SA (sulfamethoxazole, sulfapyridine, and trimethoprim) and one FQ (ofloxacin) antibiotics were detected, with concentrations ranging from 25.50 to 117.58 ng/L, which are consistent with the results measured by grab sampling. The total removal efficiency of the antibiotics was 80.1% by the treatment plant. This study demonstrates that MIP-DGT is an effective tool for in situ monitoring of trace antibiotics in complex urban wastewaters.  相似文献   

13.
• The membrane bioreactor cost decreased by 38.2% by decreasing HRT from 72 h to 36 h. • Capital and operation costs contributed 62.1% and 37.9% to decreased costs. • The membrane bioreactor is 32.6% cheaper than the oxidation ditch for treatment. • The effluent COD also improved from 709.93±62.75 mg/L to 280±17.32 mg/L. • Further treatment also benefited from lower pretreatment investment. A cost sensitivity analysis was performed for an industrial membrane bioreactor to quantify the effects of hydraulic retention times and related operational parameters on cost. Different hydraulic retention times (72–24 h) were subjected to a flat-sheet membrane bioreactor updated from an existing 72 h oxidation ditch treating antibiotic production wastewater. Field experimental data from the membrane bioreactor, both full-scale (500 m3/d) and pilot (1.0 m3/d), were used to calculate the net present value (NPV), incorporating both capital expenditure (CAPEX) and operating expenditure. The results showed that the tank cost was estimated above membrane cost in the membrane bioreactor. The decreased hydraulic retention time from 72 to 36 h reduced the NPV by 38.2%, where capital expenditure contributed 24.2% more than operational expenditure. Tank construction cost was decisive in determining the net present value contributed 62.1% to the capital expenditure. The membrane bioreactor has the advantage of a longer lifespan flat-sheet membrane, while flux decline was tolerable. The antibiotics decreased to 1.87±0.33 mg/L in the MBR effluent. The upgrade to the membrane bioreactor also benefited further treatments by 10.1%–44.7% lower direct investment.  相似文献   

14.
• Isotope dilution method was developed for the determination of 27 PPCPs in water. • The established method was successfully applied to different types of water samples. • The correction effect of corresponding 27 ILSs over 70 d was investigated. • Benefit of isotopic dilution method was illustrated for three examples. Pharmaceuticals and personal care products (PPCPs) are a unique group of emerging and non-persistent contaminants. In this study, 27 PPCPs in various water samples were extracted by solid phase extraction (SPE), and determined by isotope dilution method using liquid chromatography coupled to tandem triple quadruple mass spectrometer (LC-MS/MS). A total of 27 isotopically labeled standards (ILSs) were applied to correct the concentration of PPCPs in spiked ultrapure water, drinking water, river, effluent and influent sewage. The corrected recoveries were 73%–122% with the relative standard deviation (RSD)<16%, except for acetaminophen. The matrix effect for all kinds of water samples was<22% and the method quantitation limits (MQLs) were 0.45–8.6 ng/L. The developed method was successfully applied on environmental water samples. The SPE extracts of spiked ultrapure water, drinking water, river and wastewater effluent were stored for 70 days, and the ILSs-corrected recoveries of 27 PPCPs were obtained to evaluate the correction ability of ILSs in the presence of variety interferences. The recoveries of 27 PPCPs over 70 days were within the scope of 72%–140% with the recovery variation<37% in all cases. The isotope dilution method seems to be of benefit when the extract has to be stored for long time before the instrument analysis.  相似文献   

15.
• We created a combined system for treating oilfield polymer-flooding wastewater. • The system was composed of coagulation, hydrolysis acidification and DMBR. • Coagulant integrated with demulsifier dominated the removal of crude oil. • The DMBR proceed efficiently without serious membrane fouling. A combined system composed of coagulation, hydrolysis acidification and dynamic membrane bioreactor (DMBR) was developed for treating the wastewater produced from polymer flooding. Performance and mechanism of the combined system as well as its respective units were also evaluated. The combined system has shown high-capacity to remove all contaminants in the influent. In this work, the coagulant, polyacrylamide-dimethyldiallyammonium chloride-butylacrylate terpolymer (P(DMDAAC-AM-BA)), integrated with demulsifier (SD-46) could remove 91.8% of crude oil and 70.8% of COD. Hydrolysis acidification unit improved the biodegradability of the influent and the experimental results showed that the highest acidification efficiency in hydrolysis acidification reactor was 20.36% under hydraulic retention time of 7 h. The DMBR proceeded efficiently without serious blockage process of membrane fouling, and the concentration of ammonia nitrogen (NH3-N), oil, chemical oxygen demand and biological oxygen demand in effluent were determined to be 3.4±2.1, 0.3±0.6, 89.7±21.3 and 13±4.7 mg/L.  相似文献   

16.
• Pt/CZL exhibits the optimum catalytic performance for HC and NOx elimination. • The strong PM-Ce interaction favors the oxygen mobility and DOSC. • Pd/CZL shows higher catalytic activity for CO conversion due to more Olatt species. • Great oxygen mobility at high temperature broadens the dynamic operation window. • The relationship between DOSC and catalytic performance is revealed. The physicochemical properties of Pt-, Pd- and Rh- loaded (Ce,Zr,La)O2 (shorted for CZL) catalysts before/after aging treatment were systematically characterized by various techniques to illustrate the relationship of the dynamic oxygen storage/release capacity and redox ability with their catalytic performances for HC, NOx and CO conversions. Pt/CZL catalyst exhibits the optimum catalytic performance for HC and NOx elimination, which mainly contribute to its excellent redox ability and dynamic oxygen storage/release capacity (DOSC) at lower temperature due to the stronger PM (precious metals)-support interaction. However, the worse stability of Pt-O-Ce species and volatile Pt oxides easily result in the dramatical decline in catalytic activity after aging. Pd/CZL shows higher catalytic activity for CO conversion by reason of more Olatt species as the active oxygen for CO oxidation reaction. Rh/CZL catalyst displays the widest dynamic operation window for NOx elimination as a result of greater oxygen mobility at high temperature, and the ability to retain more Rh-O-Ce species after calcined at 1100°C effectively restrains sintering of active RhOx species, improving the thermal stability of Rh/CZL catalyst.  相似文献   

17.
• In situ preparation of FeNi nanoparticles on the sand via green synthesis approach. • Removal of tetracycline using GS-FeNi in batch and column study. • Both reductive degradation and sorption played crucial role the process. • Reusability of GS-FeNi showed about 77.39±4.3% removal on 4th cycle. • TC by-products after interaction showed less toxic as compared with TC. In this study, FeNi nanoparticles were green synthesized using Punica granatum (pomegranate) peel extract, and these nanoparticles were also formed in situ over quartz sand (GS-FeNi) for removal of tetracycline (TC). Under the optimized operating conditions, (GS-FeNi concentration: 1.5% w/v; concentration of TC: 20 mg/L; interaction period: 180 min), 99±0.2% TC removal was achieved in the batch reactor. The removal capacity was 181±1 mg/g. A detailed characterization of the sorbent and the solution before and after the interaction revealed that the removal mechanism(s) involved both the sorption and degradation of TC. The reusability of reactant was assessed for four cycles of operation, and 77±4% of TC removal was obtained in the cycle. To judge the environmental sustainability of the process, residual toxicity assay of the interacted TC solution was performed with indicator bacteria (Bacillus and Pseudomonas) and algae (Chlorella sp.), which confirmed a substantial decrease in the toxicity. The continuous column studies were undertaken in the packed bed reactors using GS-FeNi. Employing the optimized conditions, quite high removal efficiency (978±5 mg/g) was obtained in the columns. The application of GS-FeNi for antibiotic removal was further evaluated in lake water, tap water, and ground water spiked with TC, and the removal capacity achieved was found to be 781±5, 712±5, and 687±3 mg/g, respectively. This work can pave the way for treatment of antibiotics and other pollutants in the reactors using novel green composites prepared from fruit wastes.  相似文献   

18.
• Humification evolution was identified with non-destructive characterization method. • Humification process from precursors to fulvic and humic acid was confirmed. • MnO2 alone had limited oxidation ability to form HA. • MnO2 played a key role as a catalyst to transform FA to HA in the presence of O2. • MnO2 could affect the structure of the humification products. Abiotic humification is important in the formation and evolution of organic matter in soil and compost maturing processes. However, the roles of metal oxides in abiotic humification reactions under micro-aerobic remain ambiguous. The aim of this study was to use non-destructive measurement methods to investigate the role of MnO2 in the evolution of humic substances (HSs) during oxidative polymerization of polyphenol-amino acid. Our results suggested a synergistic effect between MnO2 and O2 in promoting the polymerization reaction and identified that MnO2 alone had a limited ability in accelerating the transformation of fulvic acid (FA) to humic acid (HA), whereas O2 was the key factor in the process. Two-dimensional correlation spectroscopy (2D-COS) showed that the evolution in the UV-vis spectra followed the order of 475–525 nm>300–400 nm>240–280 nm in the humification process, indicating the formation of simple organic matter followed by FA and then HA. 13C nuclear magnetic resonance (13C NMR) analysis revealed that the products under both air and N2 conditions in the presence of MnO2 had greater amounts of aromatic-C than in the absence of MnO2, demonstrating that MnO2 affected the structure of the humification products. The results of this study provided new insights into the theory of abiotic humification.  相似文献   

19.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   

20.
• Micro-plastics (MPs) significantly increase Pb toxicity. • Algae reduce the combined toxicity of MP and Pb. • The toxicity increase comes from high soluble Pb and MP-Pb uptake. • The toxicity reduction might come from energy related pathway. Microplastics (MPs) have been recognized as a new class of emerging contaminants in recent years. They not only directly impact aquatic organisms, but also indirectly impact these organisms by interacting with background toxins in the environment. Moreover, under realistic environmental conditions, algae, a natural food for aquatic organisms, may alter the toxicity pattern related to MPs. In this research, we first examined the toxicity of MPs alone, and their effect on the toxicity of lead (Pb) on Ceriodaphnia dubia (C. dubia), a model aquatic organism for toxicity survey. Then, we investigated the effect of algae on the combined toxicity of MPs and Pb. We observed that, MPs significantly increased Pb toxicity, which was related to the increase in soluble Pb concentration and the intake of Pb-loaded MPs, both of which increased the accumulation of Pb in C. dubia. The presence of algae mitigated the combined toxicity of MPs and Pb, although algae alone increased Pb accumulation. Therefore, the toxicity mitigation through algae uptake came from mechanisms other than Pb accumulation, which will need further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号