首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 3 毫秒
1.
• Fate of microplastics in integrated membrane system for water reuse was investigated. • Integrated membrane system has high removal efficiency (>98%) for microplastics. • Microplastics (>93%) were mainly removed through membrane bioreactor treatment. • Small scale fiber plastics (<200 μm) could break through reverse osmosis (RO) system. • The flux of microplastics maintained at 2.7 × 1011 MPs/d after the RO treatment. Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant was investigated. The removal rate of microplastics in the IMS system reached 93.2% after membrane bioreactor (MBR) treatment while that further increased to 98.0% after the reverse osmosis (RO) membrane process. The flux of microplastics in MBR effluent was reduced from 1.5 × 1013 MPs/d to 10.2 × 1011 MPs/d while that of the RO treatment decreased to 2.7 × 1011 MPs/d. Small scale fiber plastics (<200 μm) could break through RO system according to the size distribution analysis. The application of the IMS system in the reclaimed water plant could prevent most of the microplastics from being discharged in the coastal water. These findings suggested that the IMS system was more efficient than conventional activated sludge system (CAS) for the removal of microplastics, while the discharge of small scale fiber plastics through the IMS system should also not be neglected because small scale fiber plastics (<200 μm) could break through IMS system equipped with the RO system.  相似文献   

2.
The U.S. Environmental Protection Agency uses environmental models to inform rulemaking and policy decisions at multiple spatial and temporal scales. As decision-making has moved towards integrated thinking and assessment (e.g. media, site, region, services), the increasing complexity and interdisciplinary nature of modern environmental problems has necessitated a new generation of integrated modeling technologies. Environmental modelers are now faced with the challenge of determining how data from manifold sources, types of process-based and empirical models, and hardware/software computing infrastructure can be reliably integrated and applied to protect human health and the environment.In this study, we demonstrate an Integrated Modeling Framework that allows us to predict the state of freshwater ecosystem services within and across the Albemarle-Pamlico Watershed, North Carolina and Virginia (USA). The Framework consists of three facilitating technologies: Data for Environmental Modeling automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation is a hardware and software parallel-computing interface with pre/post-processing analysis tools, including parameter estimation, uncertainty and sensitivity analysis. In this application, five environmental models are linked within the Framework to provide multimedia simulation capabilities: the Soil Water Assessment Tool predicts watershed runoff; the Watershed Mercury Model simulates mercury runoff and loading to streams; the Water quality Analysis and Simulation Program predicts water quality within the stream channel; the Habitat Suitability Index model predicts physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator predicts fish growth and production, as well as exposure and bioaccumulation of toxic substances (e.g., mercury).Using this Framework, we present a baseline assessment of two freshwater ecosystem services-water quality and fisheries resources-in headwater streams throughout the Albemarle-Pamlico. A stratified random sample of 50 headwater streams is used to draw inferences about the target population of headwater streams across the region. Input data is developed for a twenty-year baseline simulation in each sampled stream using current land use and climate conditions. Monte Carlo sampling (n = 100 iterations per stream) is also used to demonstrate some of the Framework's experimental design and data analysis features. To evaluate model performance and accuracy, we compare initial (i.e., uncalibrated) model predictions (water temperature, dissolved oxygen, fish density, and methylmercury concentration within fish tissue) against empirical field data. Finally, we ‘roll-up’ the results from individual streams, to assess freshwater ecosystem services at the regional scale.  相似文献   

3.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

4.
The implementation of the European Water Framework Directive requires reliable tools to predict the water quality situations in streams caused by planned land use changes at the scale of large regional river basins. This paper presents the results of modelling the in-stream nitrogen load and concentration within the macro-scale basin of the Saale river (24,167 km2) using a semi-distributed process-based ecohydrological dynamic model SWIM (Soil and Water Integrated Model). The simulated load and concentration at the last gauge of the basin show that SWIM is capable to provide a satisfactory result for a large basin. The uncertainty analysis indicates the importance of realistic input data for agricultural management, and that the calibration of parameters can compensate the uncertainty in the input data to a certain extent. A hypothesis about the distributed nutrient retention parameters for macro-scale basins was tested aimed in improvement of the simulation results at the intermediate gauges and the outlet. To verify the hypothesis, the retention parameters were firstly proved to have a reasonable representation of the denitrification conditions in six meso-scale catchments. The area of the Saale region was classified depending on denitrification conditions in soil and groundwater into three classes (poor, neutral and good), and the distributed parameters were applied. However, the hypothesis about the usefulness of distributed retention parameters for macro-scale basins was not confirmed. Since the agricultural management is different in the sub-regions of the Saale basin, land use change scenarios were evaluated for two meso-scale subbasins of the Saale. The scenario results show that the optimal agricultural land use and management are essential for the reduction in nutrient load and improvement of water quality to meet the objectives of the European Water Framework Directive and in view of the regional development plans for future.  相似文献   

5.
In integrated pest management (IPM), biological control is one of the possible options for the prevention or remediation of an unacceptable pest activity or damage. The success of forecast models in IPM depends, among other factors, on the knowledge of temperature effect over pests and its natural enemies. In this work, we simulated the effects of parasitism of Lysiphlebus testaceipes (Cresson, 1880) (Hymenoptera: Aphidiidae) on Aphis gossypii (Glover, 1877) (Hemiptera: Aphididae), a pest that is associated to crops of great economic importance in several parts of the world. We made use of experimental data relative to the host and its parasitoid at different temperatures. Age structure was incorporated into the dynamics through the Penna model. The results obtained showed that simulation, as a forecast model, can be a useful tool for biological control programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号