首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
• Shale oil and gas production generates wastewater with complex composition. • Membrane technologies emerged for the treatment of shale oil and gas wastewater. • Membrane technologies should tolerate high TDS and consume low primary energy. • Pretreatment is a key component of integrated wastewater treatment systems. • Full-scale implementation of membrane technologies is highly desirable. Shale oil and gas exploitation not only consumes substantial amounts of freshwater but also generates large quantities of hazardous wastewater. Tremendous research efforts have been invested in developing membrane-based technologies for the treatment of shale oil and gas wastewater. Despite their success at the laboratory scale, membrane processes have not been implemented at full scale in the oil and gas fields. In this article, we analyze the growing demands of wastewater treatment in shale oil and gas production, and then critically review the current stage of membrane technologies applied to the treatment of shale oil and gas wastewater. We focus on the unique niche of those technologies due to their advantages and limitations, and use mechanical vapor compression as the benchmark for comparison. We also highlight the importance of pretreatment as a key component of integrated treatment trains, in order to improve the performance of downstream membrane processes and water product quality. We emphasize the lack of sufficient efforts to scale up existing membrane technologies, and suggest that a stronger collaboration between academia and industry is of paramount importance to translate membrane technologies developed in the laboratory to the practical applications by the shale oil and gas industry.  相似文献   

2.
• Recent progress of As-contaminated soil remediation technologies is presented. • Phytoextraction and chemical immobilization are the most widely used methods. • Novel remediation technologies for As-contaminated soil are still urgently needed. • Methods for evaluating soil remediation efficiency are lacking. • Future research directions for As-contaminated soil remediation are proposed. Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.  相似文献   

3.
• Powdered resin was employed for ammonia recovery from municipal wastewater. • Powdered resin achievedefficient ammonia removal under various working conditions. • Co-existing cations indicated competitive adsorption of ammonia. • Ammonia was recoveredby two-stage crystallization coupled with ion exchange. Low-strength municipal wastewater is considered to be a recoverable nutrient resource with economic and environmental benefits. Thus, various technologies for nutrient removal and recovery have been developed. In this paper, powdered ion exchange resin was employed for ammonia removal and recovery from imitated low-strength municipal wastewater. The effects of various working conditions (powdered resin dosage, initial concentration, and pH value) were studied in batch experiments to investigate the feasibility of the approach and to achieve performance optimization. The maximum adsorption capacity determined by the Langmuir model was 44.39 mg/g, which is comparable to traditional ion exchange resin. Further, the effects of co-existing cations (Ca2+, Mg2+, K+) were studied. Based on the above experiments, recovery of ammonia as struvite was successfully achieved by a proposed two-stage crystallization process coupled with a powdered resin ion exchange process. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) results revealed that struvite crystals were successfully gained in alkaline conditions (pH= 10). This research demonstrates that a powdered resin and two-stage crystallization process provide an innovative and promising means for highly efficient and easy recovery from low-strength municipal wastewater.  相似文献   

4.
• Hydrothermal treatment can greatly improve resource recovery from sewage sludge. • tCOD removal during WO was ~55% compared with ~23% after TH. • TOC solubilization during hydrothermal treatment followed first-order kinetics. • Solids and carbon balance confirmed loss of organics during thermal hydrolysis. • Reaction pathways for thermal hydrolysis and wet oxidation are proposed. We evaluated the effect of hydrothermal pretreatments, i.e., thermal hydrolysis (TH) and wet oxidation (WO) on sewage sludge to promote resource recovery. The hydrothermal processes were performed under mild temperature conditions (140°C–180°C) in a high pressure reactor. The reaction in acidic environment (pH= 3.3) suppressed the formation of the color imparting undesirable Maillard’s compounds. The oxidative conditions resulted in higher volatile suspended solids (VSS) reduction (~90%) and chemical oxygen demand (COD) removal (~55%) whereas TH caused VSS and COD removals of ~65% and ~27%, respectively at a temperature of 180°C. During TH, the concentrations of carbohydrates and proteins in treated sludge were 400–1000 mg/L and 1500–2500 mg/L, respectively. Whereas, WO resulted in solids solubilization followed by oxidative degradation of organics into smaller molecular weight carboxylic acids such as acetic acid (~400–500 mg/L). Based on sludge transformation products generated during the hydrothermal pretreatments, simplified reaction pathways are predicted. Finally, the application of macromolecules (such as proteins), VFAs and nutrients present in the treated sludge are also discussed. The future study should focus on the development of economic recovery methods for various value-added compounds.  相似文献   

5.
•Wood and its reassemblies are ideal substrates to develop novel photocatalysts. •Synthetic methods and mechanisms of wood-derived photocatalysts are summarized. •Advances in wood-derived photocatalysts for organic pollutant removal are summed up. •Metal doping, morphology control and semiconductor coupling methods are highlighted. •Structure-activity relationship and catalytic mechanism of photocatalysts are given. Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years, because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials. Herein, we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants. This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood. The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants (such as 1D fiber, 2D films and 3D porous gels) using advanced nanotechnology including sol-gel method, hydrothermal method, magnetron sputtering method, dipping method and so on. Next, we highlight typical approaches that improve the photocatalytic property, including metal element doping, morphology control and semiconductor coupling. Also, the structure-activity relationship of photocatalysts is emphasized. Finally, a brief summary and prospect of wood-derived photocatalysts is provided.  相似文献   

6.
• A novel conductive carbon black modified lead dioxide electrode is synthesized. • The modified PbO2 electrode exhibits enhanced electrochemical performances. • BBD method could predict optimal experiment conditions accurately and reliably. • The modified electrode possesses outstanding reusability and safety. The secondary pollution caused by modification of an electrode due to doping of harmful materials has long been a big concern. In this study, an environmentally friendly material, conductive carbon black, was adopted for modification of lead dioxide electrode (PbO2). It was observed that the as-prepared conductive carbon black modified electrode (C-PbO2) exhibited an enhanced electrocatalytical performance and more stable structure than a pristine PbO2 electrode, and the removal efficiency of metronidazole (MNZ) and COD by a 1.0% C-PbO2 electrode at optimal conditions was increased by 24.66% and 7.01%, respectively. Results revealed that the electrochemical degradation of MNZ wastewater followed pseudo-first-order kinetics. This intimates that the presence of conductive carbon black could improve the current efficiency, promote the generation of hydroxyl radicals, and accelerate the removal of MNZ through oxidation. In addition, MNZ degradation pathways through a C-PbO2 electrode were proposed based on the identified intermediates. To promote the electrode to treat antibiotic wastewater, optimal experimental conditions were predicted through the Box-Behnken design (BBD) method. The results of this study suggest that a C-PbO2 electrode may represent a promising functional material to pretreat antibiotic wastewaters.  相似文献   

7.
• CWF is a sustainable POU water treatment method for developing areas. • CWF manufacturing process is critical for its filtration performance. • Simultaneous increase of flow rate and pathogen removal is a challenge. • Control of pore size distribution holds promises to improve CWF efficiency. • Novel coatings of CWFs are a promising method to improve contaminant removal. Drinking water source contamination poses a great threat to human health in developing countries. Point-of-use (POU) water treatment techniques, which improve drinking water quality at the household level, offer an affordable and convenient way to obtain safe drinking water and thus can reduce the outbreaks of waterborne diseases. Ceramic water filters (CWFs), fabricated from locally sourced materials and manufactured by local labor, are one of the most socially acceptable POU water treatment technologies because of their effectiveness, low-cost and ease of use. This review concisely summarizes the critical factors that influence the performance of CWFs, including (1) CWF manufacturing process (raw material selection, firing process, silver impregnation), and (2) source water quality. Then, an in-depth discussion is presented with emphasis on key research efforts to address two major challenges of conventional CWFs, including (1) simultaneous increase of filter flow rate and bacterial removal efficiency, and (2) removal of various concerning pollutants, such as viruses and metal(loid)s. To promote the application of CWFs, future research directions can focus on: (1) investigation of pore size distribution and pore structure to achieve higher flow rates and effective pathogen removal by elucidating pathogen transport in porous ceramic and adjusting manufacture parameters; and (2) exploration of new surface modification approaches with enhanced interaction between a variety of contaminants and ceramic surfaces.  相似文献   

8.
• Capacitive biochar was produced from sewage sludge. • Seawater was proved to be an alternative activation agent. • Minerals vaporization increased the surface area of biochar. • Molten salts acted as natural templates for the development of porous structure. Sewage sludge is a potential precursor for biochar production, but its effective utilization involves costly activation steps. To modify biochar properties while ensuring cost-effectiveness, we examined the feasibility of using seawater as an agent to activate biochar produced from sewage sludge. In our proof-of-concept study, seawater was proven to be an effective activation agent for biochar production, achieving a surface area of 480.3 m2/g with hierarchical porosity distribution. Benefited from our design, the catalytic effect of seawater increased not only the surface area but also the graphitization degree of biochar when comparing the pyrolysis of sewage sludge without seawater. This leads to seawater activated biochar electrodes with lower resistance, higher capacitance of 113.9 F/g comparing with control groups without seawater. Leveraging the global increase in the salinity of groundwater, especially in coastal areas, these findings provide an opportunity for recovering a valuable carbon resource from sludge.  相似文献   

9.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

10.
• Emerging titanium coagulation was high-efficient for algae-laden water treatment. • Polytitanium coagulation was capable for both algae and organic matter removal. • Surface water purification was improved by around 30% due to algae inclusion. • Algae functioned as flocculant aid to assist polytitanium coagulation. • Algae could enhance charge neutralization capability of polytitanium coagulant. Titanium-based coagulation has proved to be effective for algae-laden micro-polluted water purification processes. However, the influence of algae inclusion in surface water treatment by titanium coagulation is barely reported. This study reports the influence of both Microcystis aeruginosa and Microcystis wesenbergii in surface water during polytitanium coagulation. Jar tests were performed to evaluate coagulation performance using both algae-free (controlled) and algae-laden water samples, and floc properties were studied using a laser diffraction particle size analyzer for online monitoring. Results show that polytitanium coagulation can be highly effective in algae separation, removing up to 98% from surface water. Additionally, the presence of algae enhanced organic matter removal by up to 30% compared to controlled water containing only organic matter. Polytitanium coagulation achieved significant removal of fluorescent organic materials and organic matter with a wide range of molecular weight distribution (693–4945 Da) even in the presence of algae species in surface water. The presence of algae cells and/or algal organic matter is likely to function as an additional coagulant or flocculation aid, assisting polytitanium coagulation through adsorption and bridging effects. Although the dominant coagulation mechanisms with polytitanium coagulant were influenced by the coagulant dosage and initial solution pH, algae species in surface water could enhance the charge neutralization capability of the polytitanium coagulant. Algae-rich flocs were also more prone to breakage with strength factors approximately 10% lower than those of algae-free flocs. Loose structure of the flocs will require careful handling of the flocs during coagulation-sedimentation-filtration processes.  相似文献   

11.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

12.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

13.
• Mechanisms of redox reactions of Fe- and Mn-oxides were discussed. • Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed. • Reductive reaction of Fe(II)/iron oxides in complex systems was examined. • Future research on examining the redox reactivity in complex systems was suggested. Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.  相似文献   

14.
• Smart wetland was designed to treat wastewater according to zero waste principle. • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite. • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days. • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer. • The plant biomass is a profitable resource for antibacterial and antioxidants. The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.  相似文献   

15.
• Byproduct formation mechanisms during electrochemical oxidation water treatment. • Control byproduct formation by quenchers. • Process optimization to suppress byproduct formation. Electrochemical oxidation (EO) is a promising technique for decentralized wastewater treatment, owing to its modular design, high efficiency, and ease of automation and transportation. The catalytic destruction of recalcitrant, non-biodegradable pollutants (per- and poly-fluoroalkyl substances (PFAS), pharmaceuticals, and personal care products (PPCPs), pesticides, etc.) is an appropriate niche for EO. EO can be more effective than homogeneous advanced oxidation processes for the degradation of recalcitrant chemicals inert to radical-mediated oxidation, because the potential of the anode can be made much higher than that of hydroxyl radicals (EOH = 2.7 V vs. NHE), forcing the direct transfer of electrons from pollutants to electrodes. Unfortunately, at such high anodic potential, chloride ions, which are ubiquitous in natural water systems, will be readily oxidized to chlorine and perchlorate. Perchlorate is a to-be-regulated byproduct, and chlorine can react with matrix organics to produce organic halogen compounds. In the past ten years, novel electrode materials and processes have been developed. However, spotlights were rarely focused on the control of byproduct formation during EO processes in a real-world context. When we use EO techniques to eliminate target contaminants with concentrations at μg/L-levels, byproducts at mg/L-levels might be produced. Is it a good trade-off? Is it possible to inhibit byproduct formation without compromising the performance of EO? In this mini-review, we will summarize the recent advances and provide perspectives to address the above questions.  相似文献   

16.
• Carbon availability was partially solved by POM recovery and fermentation. • 12% carbon sources were regenerated by fermentation of the entrapped 35% TCOD. • The unique microbial communities facilitated the efficient hydrolysis of the POM. • Considerable economic benefits in aeration power and ECS dosage were anticipated. To address the availability of carbon sources for denitrification, the accelerated hydrolysis of the most abundant but low-availability fraction of particulate organic matter (POM) was investigated. Mesh sieves with different pore sizes were used as primary pretreatment at the start-up-stage of the biological process to separate some POM from the liquid system. The changes in soluble carbohydrates and proteins were monitored to investigate the hydrolysis performance of the sieved POM, with waste activated sludge (WAS) as the control test. The results showed that an average of 35% POM could be entrapped before filtrate mat development. In addition, benefiting from the high polysaccharides concentration, as well as the high availability due to the relatively loose physical structure, a 23% hydrolysis efficiency of POM was obtained, in contrast to that of WAS (3.4%), with a hydrolysis constant of 0.39 h1. The prominent performance was also attributed to the unique microbial communities having been domesticated at a lower temperature, especially the cellulose-degrading bacteria Paraclostridium and psychrophile Psychrobacter, making up 6.94% and 2.56%, respectively. Furthermore, the potential benefits and application of improved POM hydrolysis by start-up stage recovery via mesh sieves combined with anaerobic fermentation were evaluated, including selective POM entrapment, alleviation of blockage and wear, and a reduction in aeration energy. By the proposed strategy, carbon availability for biological nutrient removal (BNR) processes is anticipated to be improved more economically than that can be achieved by primary clarifier elimination.  相似文献   

17.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

18.
• The SRAO phenomena tended to occur only under certain conditions. • High amount of biomass and non-anaerobic condition is requirement for SRAO. • Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. • AOB and AnAOB are mainly responsible for ammonium conversion. • Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.  相似文献   

19.
• Effects of metabolic uncouplers addition on sludge reduction were carried out. • TCS addition effectively inhibited ATP synthesis and reduced sludge yield. • The effluent quality such as TOC and ammonia deteriorated but not significantly. • Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.  相似文献   

20.
• A model-free sewer-WWTP integrated control was proposed. • A dynamic discrete control based on the water level was developed. • The approach could improve the sewer operation against flow fluctuation. • The approach could increase transport capacity and enhance pump efficiency. This study aims to propose a multi-point integrated real-time control method based on discrete dynamic water level variations, which can be realized only based on the programmable logic controller (PLC) system without using a complex mathematical model. A discretized water level control model was developed to conduct the real-time control based on data-automation. It combines the upstream pumping stations and the downstream influent pumping systems of wastewater treatment plant (WWTP). The discretized water level control method can regulate dynamic wastewater pumping flow of pumps following the dynamic water level variation in the sewer system. This control method has been successfully applied in practical integrated operations of sewer-WWTP following the sensitive flow disturbances of the sewer system. The operational results showed that the control method could provide a more stabilized regulate pumping flow for treatment process; it can also reduce the occurrence risk of combined sewer overflow (CSO) during heavy rainfall events by increasing transport capacity of pumping station and influent flow in WWTP, which takes full advantage of storage space in the sewer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号