首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A co-product stream from soy-based biodiesel production (CSBP) containing glycerol, fatty acid soaps, and residual fatty acid methyl esters (FAME) was utilized as a fermentation feedstock for the bacterial synthesis of poly(3-hydroxybutyrate) (PHB) and medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers. Pseudomonas oleovorans NRRL B-14682 and P. corrugata 388 grew and synthesized PHB and mcl-PHA, respectively, when cultivated in up to 5% (w/v) CSBP. In shake flask culture, P. oleovorans grew to 1.3 ± 0.1 g/L (PHA cellular productivity = 13–27% of the bacterial cell dry weight; CDW) regardless of the initial CSBP concentration, whereas P. corrugata reached maximum cell yields of 2.1 g/L at 1% CSBP, which tapered off to 1.7 g/L as the CSBP media concentration was increased to 5% (maximum PHA cellular productivity = 42% of the CDW at 3% CSBP). While P. oleovorans synthesized PHB from CSBP, P. corrugata produced mcl-PHA consisting primarily of 3-hydroxyoctanoic acid (C8:0; 39 ± 2 mol%), 3-hydroxydecanoic acid (C10:0; 26 ± 2 mol%) and 3-hydroxytetradecadienoic acid (C14:2; 15 ± 1 mol%). The molar mass (Mn) of the PHB polymer decreased by 53% as the initial CSBP culture concentration was increased from 1% to 5% (w/v). In contrast, the Mn of the mcl-PHA polymer produced by P. corrugata remained constant over the range of CSBP concentrations used.  相似文献   

2.
Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the percent of the cell mass that is polymer) ranging from 6 to 53% of the cell dry weight (CDW). Two strains, P. oleovorans NRRL B-778 (P = 27%) and P. oleovorans NRRL B-14682 (P = 6%), synthesized poly(3-hydroxybutyrate) (PHB) with number average molecular weights (Mn) of 206,000 g/mol and 195,000 g/mol, respectively. Four strains, P. oleovorans NRRL B-14683 (P = 52%), P. resinovorans NRRL B-2649 (P = 53%), P. corrugata 388 (P = 43%), and P. putida KT2442 (P = 39%), synthesized medium-chain-length PHA (mcl-PHA) polymers with Mn values ranging from 84,000 g/mol to 153,000 g/mol. All mcl-PHA polymers were primarily composed of 3-hydroxyoctanoic acid (C8:0) and 3-hydroxydecanoic acid (C10:0) amounting to at least 75% of the total monomers present. Unsaturated monomers were also present in the mcl-PHA polymers at concentrations between 13% and 16%, providing loci for polymer derivatization and/or crosslinking. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

3.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

4.
A poly(3-hydroxybutyrate) (PHB) depolymerase was purified from a fungus, Penicillium funiculosum (IFO6345), with phenyl-Toyopearl and its properties were compared with those of other PHB depolymerases. The molecular mass of the purified enzyme was estimated at about 33 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The pH optimum and pI were 6.5 and 6.5, respectively. The purified protein showed affinity to Con A-Sepharose, indicating that it is a glycoprotein. Diisopropylfluorophosphate and dithiothreitol inhibited the depolymerase activity completely. The N-terminal amino acid sequence of the purified enzyme was TALPAFNVNPNSVSVSGLSSGGYMAAQL, which contained a lipase box sequence. This purified enzyme is one of the extracellular PHB depolymerase which belong to serine esterase. The purified enzyme showed relatively strong hydrolytic activity against 3-hydroxybutyrate oligomers compared with its PHB-degrading activity. PHB-binding experiments showed that P. funiculosum depolymerase has the weakest affinity for PHB of all the depolymerases examined.  相似文献   

5.
Poly(aspartic acid): Synthesis, biodegradation, and current applications   总被引:7,自引:0,他引:7  
Poly(aspartic acid) is a biodegradable, water-soluble polymer that is valuable in numerous industrial applications. A variety of synthetic methods can be utilized to prepare poly(aspartic acid) and related polymeric materials with a range of tailored physical and chemical characteristics. This review of current investigative and patent literature describes methods of synthesis, biodegradative studies, and important current and potential applications of both poly(aspartic acid) homopolymers and copolymers.  相似文献   

6.
Poly(hydroxybutyrate-co-valerate) (PHBV) is a completely biodegradable thermoplastic polyester produced by microbial fermentation. The current market price of PHBV is significantly higher than that of commodity plastics such as polyethylene and polystyrene. It is therefore desirable to develop low-cost PHBV based materials to improve market opportunities for PHBV. We have produced low-cost environmentally compatible materials by blending PHBV with granular starch and environmentally benign CaCO3. Such materials can be used for specific applications where product biodegradability is a key factor and where certain mechanical properties can be compromised at the expense of lower cost. The inclusion of granular starch (25 wt%) and CaCO3 (10 wt%) in a PHBV matrix (8% HV, 5% plasticizer) reduces the cost by approximately 40% and has a tensile strength of 16 MPa and flexural modulus of 2.0 Gpa, while the unfilled PHBV/plasticizer matrix has a tensile strength of 27 MPa and a flexural modulus of 1.6 GPa.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

7.
Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s   总被引:2,自引:0,他引:2  
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations.  相似文献   

8.
Seeds of red pepper and tomato were sowed and cultivated in a soil blended with powdery poly(l-lactide) (PLLA), and poly(butylene succinate) (PBS). PBS depressed the growth of the two plants significantly even at a concentration as low as 5%, whereas PLLA up to 35% affected negligibly or even boosted the growth of the two plants. pH and number of microbial cells in the soil after 80 days of cultivation were almost the same independently whether the soil was blended with the two polymers or not. In contrast, the molecular weight of PBS decreased much faster than that of PLLA. Because succinic acid and 1,4-butane diol, from which PBS was synthesized, exhibited toxicity to both plant and animal cells to retard the germination rate of young radish seeds and to deform the morphology of HeLa cells significantly [1], the monomers and the oligomers produced from the PBS degradation should have a detrimental influence on the growth of the two plants.  相似文献   

9.
The influence of poly(dioxolane) (PDXL), a poly(ethylene oxide-alt-methylene oxide), as compatibilizer on poly(ɛ-caprolactone) (PCL)/tapioca starch (TS) blends was studied. In order to facilitate blending; PCL, PDXL and TS must be blended together directly; so that PDXL is partially adhered at the TS surface as shown by scanning electron microscopy. The molecular weight effect of PDXL on the PCL/TS blends showed that mechanical properties of PCL/TS/PDXL blends from low molecular weight (M n=10,000) and high molecular weight (M n=200,000) PDXL were rather dependent on TS content. The enzymatic degradability of PCL/TS/PDXL blends using α-amylase increased as the TS content increased but was independent on the dispersion of tapioca starch in the PCL matrix.  相似文献   

10.
Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.  相似文献   

11.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced at 30°C from various carbon sources byAlcaligenes eutrophus under batch-fed growth conditions. The production of P(3HB-co-3HV) from butyric and pentanoic acids was effective under nitrogenlimited conditions, and the conversion of carbon sources into copolyester was as high as 56 wt% at a C/N molar ratio of 40. In contrast, under excess-nitrogen conditions (C/N<10), cell growth was good, while P(3HB-co-3HV) production was partially inhibited. The production of P(3HB-co-3HV) from fructose and propionic acid was almost completely inhibited under excess-nitrogen conditions.  相似文献   

12.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

13.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of unmodified bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were subjected to X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), mechanical characterization and scanning electron microscope (SEM). Significant changes in the tensile properties were observed depending on the different chemical constituents of the films. The presence of clay and crosslinking with epichlorohydrin were both found to have considerable effect on the morphology and mechanical property of the films. The SEM investigations, XRD analysis and FTIR studies revealed the interaction between the various chemical components of the films.  相似文献   

14.
Fibers of poly(lactic acid) (PLA) produced by two-step melt-spinning are studied. The PLA resin used contains a 98:02 ratio of l:d stereochemical centers. A range of processing conditions is explored. The cold-draw ratio is varied from 1 to 8 under conditions of constant heating. In addition, three draw ratios are studied at three different heating rates. The thermal, mechanical, and morphological properties of the resultant fibers are determined. Properties can be widely manipulated through a combination of draw ratio and draw temperature. A maximum tensile strength and modulus of 0.38 GPa and 3.2 GPa, respectively, are obtainable. Using atomic force microscopy, the fiber morphology is found to be highly fibrillar; microfibril diameters are roughly 40 nm in diameter. Very high draw ratios cause the fiber to turn from shiny and translucent to dull and white; this transition is attributed to surface crazing. Significant molecular weight loss is observed upon processing (weight-average molecular weights drops between 27% and 43%).  相似文献   

15.
A Literature Review of Poly(Lactic Acid)   总被引:32,自引:0,他引:32  
A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced.  相似文献   

16.
Poly(acrylic acid)s (PAAs) with various functional groups, such as phenolic hydroxyl, amino, and aldehyde groups, in the side-chains were treated with manganese peroxidase (MnP) prepared from the culture of lignin-degrading white rot fungi. While no change in the Mw of PAA without a functional group was observed after a 24-h MnP treatment, the Mw␣of␣PAA␣with p-aminophenol as side-chains decreased from 90,000 to 59,000, and that with␣o-aminophenol from 70,000 to 26,000. MnP treatment also decreased the Mw of PAA with a p-aminoaniline or aldehyde group. Furthermore, the MnP treatment generated a significant depolymerization of the cross-linked PAA with p-aminophenol from an insoluble polymer to water soluble products. These results suggest that functional groups generating radicals can act as elemental devices and induce degradation of the PAA main chain.  相似文献   

17.
Poly (ethylene-terephthalate), (PET) bottles waste was chemically recycled by glycolysis and hydrolysis. The depolymerization processes were carried out in different time intervals from 5 to 360 min, in two different molar ratios of PET/EG, 1:5 and 1:18 and at different temperatures. The PET glycolysis leads to formation of bis(2-hydroxy-ethyl)terephthalate (BHET) monomer and PET oligomers with hydroxyl and carboxyl end groups while PET hydrolysis is followed by formation of monomers terephthalic acid (TPA) and ethylene glycol (EG). Fractions of monomers and oligomers were further characterized by FTIR spectroscopy and by differential scanning calorimetry (DSC). The results show that DSC is successful method to describe the different structures of oligomers formed during chemical recycling of PET.  相似文献   

18.
The amino acid sequence of a peptide containing an active serine was examined with poly(3-hydroxybutyrate) (PHB) depolymerase ofAlcaligenes faecalis T1. The sequence Cys-Asn-Ala-Trp-Ala-Gly-Ser-Asn-Ala-Gly-Lys was obtained. This amino acid sequence around the active serine does not fit any reported sequence of other esterases and proteases. On the other hand, a segment of the amino acid sequence of PHB depolymerase ofA. faecalis was homologous to the type III sequence of fibronectin. Similar sequences have been reported in some type of bacterial chitinase and cellulases, and PHB depolymerase seems to have an overall similarity to these bacterial extracellular hydrolases.  相似文献   

19.
The effect of orientation in the amorphous and crystalline regions on the biodegradability of PTMS [poly(tetramethylene succinate)] was studied using the amorphous orientation function, birefringence, and crystallinity. The crystalline and amorphous intrinsic lateral sonic moduli, E t,c 0 and E t,am 0 , were 2.61 × 103 and 0.41 × 103 MPa, respectively. Using the data on birefringence, crystalline and amorphous orientation function (f and f am), crystallinity, and sonic modulus of the oriented PTMS fibers, the intrinsic birefringence of the crystalline ( c 0 ) and amorphous ( am 0 ) regions were evaluated to be 0.0561 and 0.0634, respectively. The biodegradabilities of oriented PTMS films were reduced as the elongation increased, i.e., the amorphous orientation increased. At low elongation (100 and 150%), however, biodegradabilities remained unchanged when the degradation test was performed in activated sludge, which was attributed to the amorphous orientation occurring even at 100% elongation, though the amorphous orientation direction was perpendicular to the fiber axis.  相似文献   

20.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号