首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张泽  赵洪君  孟洁  洪晨  李益飞 《环境工程》2021,39(3):161-171
热解是目前生物质能源化的主要方法,生物质热解技术已得到广泛研究.基于文献资料,总结了不同种类的简单生物质(蛋白质、糖类、木质素)和复杂生物质(藻类、秸秆、木屑和脂类)热解的主要产物,指出了部分产物在不同条件下的产率变化趋势.同时分析了聚合度对纤维素热解产物的影响,对比了纤维素和半纤维素的热解特点,介绍了木质素中的部分基...  相似文献   

2.
随着化石资源的日益枯竭及环境污染问题的日益严峻,开发与利用环境友好的可再生资源受到广泛关注。木质生物质微波热解具有反应速率快、易于控制、安全无污染等优点,但是存在产物分布不均和经济价值不高等问题,严重制约了生物质能的全面与高效利用。系统地介绍了木质纤维素组分的结构,详细阐述了木质纤维素各组分的热解机制,并比较了微波热解与传统热解的差异,探讨了微波热解的影响因素以及微波催化热解木质纤维素的产物分布。此外,介绍不同种类催化剂(碳基材料、分子筛、金属氧化物等)在促进生物质微波热解中的作用,可以高效转化木质纤维素,优化微波热解产物的种类分布,并促进选择性生产特定高值化学品,以实现木质纤维素的资源化和高值化利用。最后,对木质纤维素热解未来研究方向和技术发展进行了展望。  相似文献   

3.
石油化工产品是制备众多生活和生产用品,如化妆品、润滑油、塑料制品、合成纤维等的原材料,这使得人类对以石油为原料生产的各种化学品的依赖非常严重。基于此,以可再生生物质为原料生产高附加值平台化学品受到了广泛关注。生物质定向热解可选择性地制备多种高附加值平台化学品,已成为目前全球研究的前沿和热点。对生物质定向热解制备多种常见的高附加值化学品进行了系统地概述,首先总结了热解原料、热解方式、预处理方式、反应温度、反应时间、催化剂等条件对目标高附加值产物的影响规律,然后分析了生物质定向热解制备目标产物的反应路径,最后对生物质定向热解制备平台化学品的未来发展方向进行了展望,为生物质的高效转化利用提供一定的依据和借鉴。  相似文献   

4.
旋转锥式闪速热解生物质试验研究   总被引:13,自引:1,他引:13  
徐保江  曾忠 《环境工程》1999,17(5):71-74
利用旋转锥式闪速热解装置,对生物质进行了闪速热解试验研究。生物质是一种可再生的能源,在无氧或有限氧气供给的条件下热解为液体、固体、气体3种燃料产品。介绍了以旋转锥式反应器为核心的闪速热解液化设备、工艺参数及产物特性,并根据此结果对比了常规热解、快速热解、闪速热解的生物油典型数据,为生物质废弃物的有效清洁利用及可再生能源的生产探索了新的途径。  相似文献   

5.
油基钻屑与生物质热解油分别存在产率低、有害组分含量高的问题,为探究二者共热解是否可以产生协同作用,采用固定床反应器研究了热解温度、终温时间(热解温度保持时间)、升温速率、N2流量、生物质与油基钻屑混合比例(质量比)等因素对油基钻屑与单组分生物质共热解的影响.结果表明:①油基钻屑与单组分生物质热解效果随热解温度和终温时间的增加而增强、随升温速率的加快而减弱,N2流量对热解过程影响不大;最佳热解工艺参数为热解温度350℃、终温时间60 min、升温速率10℃/min、N2流量0.15 L/min.②共热解可产生协同作用,当生物质与油基钻屑混合比例分别为3:7、7:3时,热解灰渣含油量较理论值下降较为明显,降幅分别为21.71%、17.64%.③共热解可减少生物质热解过程中有害物质的生成,提高油基钻屑的液相产率,生物质单独热解时液相产物中有害组分占比高达74.92%;加入适量油基钻屑共热解时有害组分占比明显降低,当油基钻屑与生物质混合比例为7:3、8:2时,有害组分占比可分别降至22.74%、17.57%.研究显示,共热解产生的协同作用可减少有害物质的生成,提高热解油产率,在油基钻屑无害化、资源化利用与生物质开发中具有良好的应用前景.   相似文献   

6.
生物质热解技术是我们对生物质能进行清洁利用的有效方式。随着当前社会生产力的发展,世界各国对于能源的需求越来越高,开发生物质能是有效解决当前能源不足问题的有效方式。本文就综述了生物质热解影响的因素,在此基础上,分析了国内外生物质热解技术研究发展的现状,最后对其发展趋势做出了展望。  相似文献   

7.
分子筛是一类具有骨架结构的微孔结晶性材料。以分子筛为催化剂,由生物质固体废弃物制得的生物油中氧元素含量明显降低,热值升高。综述了分子筛的不同改性制备方法,包括浸渍法、分步离子交换法、机械混合法、水热晶化法等;并对分子筛在生物质固体废弃物制取生物油中的应用进行了总结,包括促进脱水、脱羰、脱羧、异构化,以及提高C2-C4低碳烯烃的选择性,降低焦炭收率;同时对分子筛的改性及在生物质固体废弃物制备生物油中的应用进行了展望,指出选择合适的分子筛并优化合成方案是未来主要的发展趋势。  相似文献   

8.
滇池蓝藻快速热解液化制取生物油的初步研究   总被引:1,自引:0,他引:1  
文章采用实验室规模的固定床反应器作为实验平台,对蓝藻快速热解液化制取生物油的可行性进行了探讨,并对影响液化性能的诸多因素,如热解温度(300~700℃)、载气流量(0~400 mL/min)、原料粒径(d<0.08 nn,0.15<d<0.25 mm,0.25<d<0.38 mm,0.38<d<3.35 mm,d>3....  相似文献   

9.
辛星  田文栋  肖云汉 《环境工程》2012,(Z2):473-476,514
通过测定两种气氛下(氮气和二氧化碳)的催化热解(HZSM-5为催化剂)的产率,并利用气质联用仪(GC/MS)分析热解油的成分,研究这两种热解气氛对快速催化热解生物质(玉米杆)的产率和液体产物的影响差异。结果表明:改变热解气氛对结果产生明显影响,CO2气氛对催化热解不利,该气氛下的固液气产率分别为30.30%,37.89%,31.81%,CO2促使快速催化热解的液体产量降低,促进水相产物的生成。对催化热解油的分析发现CO2气氛抑制了HZSM-5的去氧和芳香化催化作用,同时促进稠环芳烃的生成,使产物结构复杂化。  相似文献   

10.
水生植物热解生物油对中肋骨条藻的抑制作用   总被引:1,自引:0,他引:1  
将芦竹、芦苇、香蒲3种湿地常见水生植物分别在250、300、400、500、600℃下进行热裂解,研究热解所得生物油对中肋骨条藻的抑制作用.结果表明,3种水生植物在不同温度下所得的15种热解生物油对中肋骨条藻生长均表现出一定的抑制作用,且随着生物油浓度的增加,抑制作用呈增强趋势.同种植物热解温度不同,所得热解生物油的抑...  相似文献   

11.
生物炭碳封存技术研究进展   总被引:4,自引:6,他引:4  
姜志翔  郑浩  李锋民  王震宇 《环境科学》2013,34(8):3327-3333
生物炭(biochar)是一种在无氧或者限氧的条件下,对生物质原料进行高温热解而得到的一种细粒度、多孔性的碳质材料,其稳定的芳烃结构使之在土壤中对生物和非生物氧化具有较强的抗性,成为一种有效的碳封存技术,并受到越来越多的关注.通过对生物炭碳封存机制的阐述,重点评述了生物炭的制备、稳定性及植物生长和土壤有机碳对生物炭添加的响应等方面对生物炭碳封存潜力的影响,并初步考察了生物炭碳封存潜力和经济性等方面的研究进展.最后针对目前关于影响生物炭碳封存潜力因素以及这些因素之间相互关系等方面的研究中存在的问题和不足,提出了进一步研究的方向,为我国生物炭技术的研究和应用提供有益参考.  相似文献   

12.
闻泽 《环境》2006,(4):98-99
在今年的广东“两会”上,民盟广东省委提出的《关于在广州实行从潲水油中提炼生物质柴油的建议》议案引起广泛关注。该议案提出,从餐饮潲水油(废弃动植物油脂)中提取的柴油里基本上没有硫和芳烃,而且含氧值很高.对内燃机的正常燃烧非常有利,从而降低尾气有害物质排放。  相似文献   

13.
选取木薯茎作为与生活垃圾共热解的试验物料,采用热重分析(TG-DTG)、动力学分析、红外分析(FTIR)等方法,研究不同比例木薯茎对生活垃圾热解产物的影响、最佳添加量及协同作用。结果表明:热解主要分为脱水、热解和炭化3个阶段,生活垃圾与木薯茎混合共热解的温度区间主要在200~550℃;生活垃圾、木薯茎及20%木薯茎与生活垃圾混合的热解活化能分别为50.72、37.72及43.36 k J/mol,添加一定量的木薯茎可以降低生活垃圾热解的表观活化能,并对生活垃圾的热解具有一定的促进作用;木薯茎最佳添加量为20%,热解液的产率提高了6.24%;与生活垃圾单独热解相比,添加20%木薯茎的共热解油中羧酸、醇、酚的含量有所减少,有利于脱氧、脱酸,提高热解油的热值,增加热解液的有机物种类与数量。  相似文献   

14.
主要考察了不同废植物的热解产气产油(液)产炭效果及不同过程条件的热解产气产油产炭效果。可用作热解制气制油制炭的废植物包括一切草木本植物,含有大量的木质素和纤维素,属于可再生能源。废植物热解制气制油制炭,可以使大量的被遗弃废植物得到充分利用,变废为宝,同时,可以帮助解决未来可能出现的能源危机,为废弃物的资源化、为未来的能源发展提供了新的方向。另外,由于废植物的广泛可取,废植物热解制气特别适用于在中小城市和农村推广应用,改善人们的生活条件和居住环境,进一步缩小城乡差距,为国家的经济发展做出贡献。  相似文献   

15.
由农业林业残余物和生活生产废弃物等生物质热解得到的生物油,是一种新型可再生能源。本文介绍了生物油作为供热发电能源、交通燃料和化工原料等方面的应用。  相似文献   

16.
水生植物热解生物油对中肋骨条藻抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
为揭示水生植物生物油抑藻机制,研究了芦竹300℃、芦苇400℃以及香蒲400℃这3种生物油对中肋骨条藻丙二醛含量变化及抗氧化酶系统(SOD、POD、CAT)活性的影响.结果表明,在这3种生物油作用下,生物油浓度越高MDA含量越高,当生物油浓度为10 mg·L-1时,中肋骨条藻丙二醛(MDA)含量随着作用时间的延长而升高;超氧化物歧化酶(SOD)活性随生物油添加浓度的升高而升高,在芦竹300℃及香蒲400℃生物油作用下随时间延长呈先升高后降低趋势,均在24 h时达到最大值,分别为93.6 U.(107cells)-1、8.23 U.(107cells)-1,而在芦苇400℃生物油作用下72 h内始终保持升高趋势;过氧化物酶(POD)活性同样也随生物油浓度的增加而升高,芦竹300℃、芦苇400℃生物油作用下POD活性先升后降,香蒲400℃作用下则呈波动上升趋势;过氧化氢酶(CAT)活性在这3种生物油作用下随培养时间的延长均呈现先升高后降低的趋势,且生物油浓度越大,CAT活性越高.生物油引起抗氧化酶活性升高,导致藻细胞内产生氧化胁迫,可能是其抑制藻类的主要机制.  相似文献   

17.
废弃植物生物质热解制备为生物质炭是碳源整合再利用的有效手段之一,既能减少生物质自然分解过程中CO2排放,同时,生物质炭还田还可通过调控微生物活动和碳源利用效率来减少土壤本底有机碳矿化.此外,生物质炭对土壤通气性的改善有利于CH4氧化;其多孔结构、高比表面积等性能有利于CO2及可溶性有机碳等易损耗碳源的吸附固定,促进土壤有机碳的固持,增加土壤碳库容量和质量.在农田生态系统中合理施加生物质炭有利于提高植物光合固碳能力、增加植物生物量和作物产量,具有环境和经济双重效益.因此,生物质炭可借助土壤和植物两条途径助力农田生态系统中碳的减排增汇.然而,生物质炭的内源性污染物、异质性和持久性等导致其很可能具有长期的生态环境风险,仍需深入而广泛的研究.环境友好型生物质炭的制备、生物质炭的因地制宜策略等仍然是亟待解决的难题.未来研究建议在生物质炭促生增碳的相关机理、生物质炭的长期生态效应、生物质炭基“智慧土壤”的研发以及生物质炭制备工艺标准化和生产规模化等方面加强,实现生物质资源的高效整合与绿色应用,以期助力生物质炭还田技术的推广,更好地服...  相似文献   

18.
在500℃下,利用3种分子筛(4A、5A和Al_2O_3分子筛)对废弃印刷线路板(WPCBs)非金属粉末进行共催化热解试验.通过对热解三相产物产率的计算、热解油馏程分布、成分和碳数分布分析,研究不同分子筛对WPCBs热解过程中热解油轻质化效果的影响.结果表明,5A分子筛对WPCBs热解油轻质化效果最好,其中轻组分或汽油组分(馏出温度在0~200℃)含量最高,达到45%,而柴油组分(馏出温度在200~350℃)含量也达到了45%,成分主要以苯酚、异丙基苯酚和双酚A为主,选择性较好,热解油的碳数分布与汽油碳数分布相近,且热解油的含溴有机物(如2-溴苯酚)有一定的去除效果.Al_2O_3对热解油轻质化和脱溴的效果比5A分子筛稍差.而4A分子筛对热解油的轻质化效果和脱溴效果都较弱.综上所述,5A分子筛在热解油轻质化研究中具有良好的催化作用.  相似文献   

19.
不同生物质制备的生物炭对菲的吸附特性研究   总被引:1,自引:1,他引:1       下载免费PDF全文
张晗  林宁  黄仁龙  舒月红 《环境工程》2016,34(10):166-171
以不同来源的生物质(荔枝树枝、小麦和水稻秸秆)为原料,在限氧条件下制备生物炭,对其进行表征,并进行吸附实验研究生物炭对菲的吸附特性。结果表明:生物炭的结构和理化性质随着生物质来源和热解温度的不同而呈现出明显的差异;荔枝树枝生物炭对菲的吸附能力(qe)和吸附亲和力(Koc)要明显大于小麦秸秆和水稻秸秆制备所得的生物炭,说明木本植物来源的生物炭与草本植物来源的生物炭在结构性质上有着明显的差异;不同温度(300,400,500,600℃)制备的荔枝树枝生物炭对菲的吸附研究表明,随着热解温度的升高,生物炭对菲的吸附能力(qe)和吸附亲和力(Koc)明显增强,吸附等温线的线性程度降低。生物炭吸附菲的可能机制有疏水效应、孔隙填充效应以及π-π共轭反应等。  相似文献   

20.
含酚废水是一类高毒性和难生化降解的有机工业废水,在我国水污染控制中被列为重点解决的有害废水之一。分析了含酚废水中酚类化合物的种类、来源和危害,重点阐述了生物强化技术的发展历程,并对含酚废水生物强化技术的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号