首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract

The formation of the insecticide methidathion (S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl phosphorodithioate) complexes with inorganic cation-saturated (Mg2+, Ca2+, Cu2+, and Ni2+) montmorillonites was investigated. The nature and structure of the complexes was determined by X-ray diffraction and infrared spectroscopy. The arrangement of the pesticide molecule in the interlayer space was also considered from ab initio calculations using simpler related molecules. The insecticide methidathion penetrated the interlayer spaces of the homoionic clay samples. The ligand–cation interactions in these complexes depend on the nature and characteristics of the saturating cations. Mechanisms involving water bridges and direct coordination with the exchange cation were proposed for the adsorption of methidathion by inorganic cation-saturated montmorillonites. The effect of the inorganic cations on the sorption of the cationic surfactant tetradecyltrimethylammonium bromide (TDTMA) by montmorillonite was also studied and the subsequent sorption of methidathion in TDTMA+-Montmorillonite determined. Van der Waals bonds constitute the methidathion adsorption mechanism by montmorillonite saturated with TDTMA+. The arrangements of methidathion and of the cationic surfactant molecules in the montmorillonite interlayer space were demostrated.  相似文献   

2.
Sánchez L  Romero E  Peña A 《Chemosphere》2003,53(8):843-850
Packed columns were prepared with an agricultural soil to examine the ability of two organic soil modifiers, biosolid and the cationic surfactant tetradecyl trimethyl ammonium bromide (TDTMA), to alter the leaching of the insecticide methidathion. Ion chloride was used as a tracer of water flow and the mathematical model PESCOL was selected to predict the mobility of the insecticide. The biosolid addition (SB column) delayed the breakthrough curves for methidathion with respect to the non-amended soil (S) column. The cationic surfactant TDTMA, alone or combined with the biosolid (SS and SBS) and previously incorporated in the soil column, caused the highest retardation of this pesticide in the soil columns. Theoretical retardation factors (TRf) were similar to the experimental Rf values for the S and SB columns, and predicted the high retention observed in the SBS and SS columns. The simulation with PESCOL predicted the experimental results.  相似文献   

3.
Sánchez L  Romero E  Peña A 《Chemosphere》2005,59(7):969-976
Photodegradation studies of the organophosphorous insecticide methidathion in thin layers of wet soil samples have been carried out under solar irradiation. Soil samples consisted of an agricultural soil added with two amendments: a municipal biosolid and the cationic surfactant TDTMA (tetradecyl trimethyl ammonium bromide). Dark controls of the different soil treatments were also considered. Soil and biosolid samples were previously autoclaved to eliminate biotic degradation. In this study we investigated the role of these amendments in methidathion photodegradation which is a rapid (<7 days) and indirect process. Although scarce differences were found between non-amended and amended samples, methidathion from soil exposed under sunlight is degraded more quickly than in dark conditions. Photodegradation products (methidathion oxon GS 13007 and GS 12956) were not detected.  相似文献   

4.
This study was undertaken to characterize the adsorption mechanism of alachlor and metolachlor on montmorillonite modified with cationic surfactants. Adsorbed amounts of cationic surfactant on montmorillonite surfaces were determined by CNHSO analyzer. Equilibrium concentrations of alachlor and metolachlor were determined by GC and adsorption results were fit to a linear regression equation. The slope of the isotherms (Kd) was normalized to the fraction of organic carbon on montmorillonite complexes to produce corresponding Koc. Adsorption of surfactants fit very well to Langmuir equation. Increased basal spacing indicates that surfactant molecules could penetrate through the interlayer spacing and arrange themselves in different ways. Equilibrium data of alachlor and metolachlor suggest that adsorption may occur via physical or chemical bonds. Koc values of alachlor or metolachlor decreased as the fraction of the organic carbon increased in montmorillonite complexes indicating independent adsorption process. Changes of the molar free energy of the adsorption reactions were in the range of physical adsorption, indicating that adsorption reactions are spontaneous and the molecules either adsorb on the surface or penetrate into the inter-layers of montmorillonite-surfactant complex. Careful investigation of the adsorption data suggests that interaction may occur via the active groups such as carbonyl group (-C=O), anilidic (C-N) group and/or phenyl rings. This information may provide better understanding on adsorption mechanism and be useful in designing ecologically acceptable herbicide formulations.  相似文献   

5.
Fenuron sorption on homoionic natural and modified smectites   总被引:1,自引:0,他引:1  
The adsorption isotherms of fenuron (1,1-dimethyl-3-phenylurea) on three smectites (SWy and SAz montmorillonites and SH hectorite) differing in their layer charge (SH相似文献   

6.
利用十六烷基三甲基溴化铵对天然蒙脱土进行改性,并用聚乙烯醇对改性蒙脱土进行固定化处理,然后进行柱状吸附和振荡条件的吸附试验。研究结果表明,HDTMA改性蒙脱土固定化后能有效吸附苯酚,不同环境条件对苯酚的柱状吸附能力产生不同的影响。在pH4~8的范围内,固定化改性蒙脱土对苯酚的吸附效果无显著性差异,pH在10以上,其吸附能力明显下降;温度对吸附效果影响不大;进水苯酚浓度越高,改性蒙脱土对苯酚的吸附量越大,但出水苯酚浓度也高;苯酚的流速越小,吸附容量越高,吸附效果越好。  相似文献   

7.
Abstract

The adsorption isotherms of fenuron (l, l‐dimethyl‐3‐phenylurea) on three smectites (SWy and SAz montmorillonites and SH hectorite) differing in their layer charge (SH<SWy<SAz) and saturated with several inorganic and organic cations were determined. The isotherms and sorption parameters from Freundlich equation indicate low adsorptivity on inorganic clays, but medium sorption in organoclays (OCls). Fenuron adsorption on homoionic smectites increases with decreasing layer charge and hydratation power of the inorganic exchangeable cation (except Fe3+), indicating that fenuron adsorbs as neutral molecule on uncharged siloxane surface by hydrophobic bonding, with some contribution of polar bond (fenuron C=O group and water associated to exchangeable cation). In the case of Fe3+‐saturated smectite fenuron protonation, provided by the interlayer acidic environment, promotes further sorption of fenuron as cationic form. The sorption on organoclays is enhanced via hydrophobic interaction with organocations, which is favoured for high layer charge and basal spacing and organocation saturation close to CEC. Quaternary alkylamonium is more efficient in high layer charge smectite, whereas primary alkylammonium is more efficient in medium charge smectite. The low values of the maximum sorption obtained with homoionic inorganic and organic smectites (100 and 5000 μmol/Kg) represent one fenuron molecule for each 2000–200 exchange sites and indicate that fenuron sorption is mainly associated to the outer exchange sites. This low adsorptivity of fenuron, as consequence of its high water affinity (high water solubility) would suggest high mobility of fenuron in natural soil and water systems.  相似文献   

8.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

9.
Preparations of organobentonite using nonionic surfactants   总被引:12,自引:0,他引:12  
Shen YH 《Chemosphere》2001,44(5):989-995
Due to hydrophilic environment at its surface, natural bentonite is an ineffective sorbent for nonpolar nonionic organic compounds in water even though it has high surface area. The surface properties of natural bentonite can be greatly modified by simple ion-exchange reactions with large organic cations (cationic surfactants) and this organobentonite is highly effective in removing nonionic organic compounds from water. Cationic surfactant derived organobentonites have been investigated extensively for a wide variety of environmental applications. In this study, the preparation of organobentonite using nonionic surfactants has been investigated for the first time. Results indicate that nonionic surfactants intercalates into the interlamellar space of bentonite and may demonstrate higher sorption capacity than cationic surfactant. It is possible to create large interlayer spacing and high organic carbon content organobentonite by use of nonionic surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths. In addition, nonionic surfactant derived organobentonites are more chemically stable than cationic surfactant derived organobentonites.  相似文献   

10.
系统地评述了无机、有机阳离子、农药分子、细菌等环境污染物在蒙脱石层间域中的吸附、脱附、氧化还原、催化降解等界面反应机理 ,并指出它们的环境化学行为对环境的影响和意义  相似文献   

11.
Jiang JQ  Cooper C  Ouki S 《Chemosphere》2002,47(7):711-716
This study concerns with the development of modified montmorillonites as adsorbents for water treatment. Polymeric aluminium and iron intercalated forms of montmorillonites have been prepared in the absence and presence of an alkylammonium cationic surfactant (Hexdecyl-trimethyl-ammonium bromide, HDTMA). Montmorillonites intercalated with polymeric Al, Fe, Fe/Al (2:1 Fe to Al ratio in solution), possess large N2 Brunauer-Emmett-Teller (BET) surface areas. XRD data also shows trace amounts of illite and plagioclase within the clay materials. Montmorillonites intercalated with HDTMA, polymeric Fe/HDTMA, polymeric Al/HDTMA and polymeric Fe/Al/HDTMA (1:1 metal to surfactant molar ratio in solution) undergo some losses of N2 BET surface areas. Preliminary adsorption studies on phenol have shown that polymeric Al/HDTMA- and HDTMA-only-modified montmorillonites possess a good affinity for phenol, whereas the polymeric Al/Fe modified- and starting montmorillonites have little affinity for phenol adsorption.  相似文献   

12.
Adsorption of hydrogen sulfide on montmorillonites modified with iron   总被引:7,自引:0,他引:7  
Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation.  相似文献   

13.
The adsorption and reaction of aromatic molecules in the interlayer of transition-metal ion(Cu2+, Fe3+, Ru3+)-exchanged montmorillonites have been investigated by resonance Raman spectroscopy. Some mono-substituted benzenes are found to form cation radicals of 4,4′-substituted biphenyl together with those having the composition of the parent molecules. Benzene, biphenyl and p-terphenyl polymerize to form the poly-p-phenylene cation. Thus, the cation radicals or cations may remain stable when para-positions of the benzene ring are occupied by a stable substituent, or undergo polymerization when the para-position is open. Phenols behave differently in that the polymerization via the ortho-position also occurs and the reaction is faster in aerobic than in anearobic conditions.  相似文献   

14.
The effect of modified montmorillonites on the biodegradation and adsorption of selected steranes, diasteranes and hopanes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonite respectively which were used in this study. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium montmorillonite did not support the biodegradation of the selected steranes, diasteranes and hopanes as alteration of the biomarkers via biodegradation varied from a paltry 2–6 %. The adsorption of the selected biomarkers on acid activated montmorillonite and organomontmorillonite was also poor. However, adsorption of the biomarkers on potassium montmorillonite was relatively high. Sodium montmorillonite and unmodified montmorillonite appear to stimulate the biodegradation of the selected biomarkers moderately (30–35 %) with adsorption occurring at low level. Calcium montmorillonite and ferric montmorillonite effected significant biodegradation (51–60 %) of the selected biomarkers.  相似文献   

15.
The compositional changes of saturates, aromatics, resins and asphaltenes (SARA) fractions in aqueous clay/oil microcosm experiments with a hydrocarbon-degrading microorganism community were analysed using Iatroscan. The clay mineral samples used in this study were organomontmorillonite, acid-activated montmorillonite and K, Ca, Zn and Cr montmorillonites produced by modifying the original montmorillonite sample. The evaluation and quantification of biodegradation and adsorption were carried out using a combination of the Iatroscan and gravimetric analysis. The SARA compositions in the presence of organomontmorillonite and acid-activated montmorillonite after incubation follow the same pattern in which the aromatic fraction is higher than the other fractions unlike in the presence of unmodified, K, Ca and Zn montmorillonites, where the saturates fraction is higher than the other fractions. Changes in SARA fractions due to biodegradation seemed to occur most in the presence of unmodified and calcium montmorillonites; hence, the removal of SARA fractions due to biodegradation was significant and enhanced in the presence of these two clay samples. However, biodegradation in the presence of organomontmorillonite and acid-activated and Cr montmorillonites was hindered. The study indicated that Cr montmorillonite adsorbed resins most, whereas Zn and K montmorillonites adsorbed aromatics most after incubation.  相似文献   

16.
Kahle M  Stamm C 《Chemosphere》2007,68(7):1224-1231
Substantial amounts of sulfonamides, ionizable, polar veterinary antimicrobials, may reach the environment by spreading of manure. Sorption to soils and sediments is a crucial but not sufficiently understood process influencing the environmental fate of sulfonamides. Therefore, we investigated sorption of sulfathiazole to clay minerals (montmorillonite, illite) and ferrihydrite for varying pH values and two contact times (1d, 14 d) under sterile conditions. Results were compared to sulfathiazole sorption to organic sorbents. Sulfathiazole sorption to inorganic sorbents exhibited pronounced pH dependence consistent with sorbate speciation and sorbent charge properties. While sulfathiazole cations were most important for sorption to clay minerals, followed by neutral species, ferrihydrite was a specific anion sorbent, showing significant sorption only between pH 5.5-7. Experiments revealed a substantial increase of sorption with time for ferrihydrite (pH 5.5-7) and illite (pH<5.5). Reasons may be disaggregation of clay minerals and, for ferrihydrite, diffusion and sorption of sulfathiazole in micropores. Independent of contact time and pH, sorption to inorganic sorbents was more than an order of magnitude lower than to organic sorbents. This implies that in many topsoils and sediments inorganic sorbents play a minor role. Our results highlight the need to account for contact time and speciation when predicting sulfonamide sorption in the environment.  相似文献   

17.
Simultaneous sorption of lead and chlorobenzene by organobentonite   总被引:10,自引:0,他引:10  
Lee JJ  Choi J  Park JW 《Chemosphere》2002,49(10):1309-1315
Clays or organoclays have been used as a barrier to prevent the transport of hazardous contaminants in landfills. However, clays are known to effectively sorb mostly inorganic contaminants, while organoclays are mainly used for organic contaminants. Since the organoclays are basically clay particles modified with cationic surfactants, there might exist an optimal coverage of cationic surfactant on the clay particles to sorb both inorganic and organic contaminants. In order to determine the optimal mass of cationic surfactants on the bentonites, sodium bentonites were treated with various ratios of hexadecyltrimethylammonium (HDTMA) to bentonites. Chlorobenzene and lead were selected as representative contaminants. When either chlorobenzene or lead exists as a single contaminant, chlorobenzene sorption increased with increasing HDTMA to bentonite ratios, and lead sorption decreased with increasing HDTMA to bentonite ratios. Sorption of chlorobenzene was a function of HDTMA coverage on the bentonites, while lead sorption was much more influenced by the initial lead concentration rather than the mass of HDTMA added to the bentonites.  相似文献   

18.
The ability of a sodium montmorillonite (CLONa) and two commercial available organoclays having interlayer organic cations possessing different functional groups (CLO20A and CLO30B) was investigated for adsorbing two pesticides namely fenexamid (FEX) and pyrimethanyl (PMT). The two organoclays displayed a higher affinity with the pesticides than the unmodified clay, but the improvement in adsorption capacity varied according to the characteristics of the pesticide and the interlayer organic cation. FEX was adsorbed to a greater extent than PMT by both organoclays, which may be due to the higher hydrophobicity of FEX thereby indicating considerable hydrophobic interaction between the adsorbent/adsorbate systems. Our findings may find application in the removal of water-soluble pesticides from aquifers.  相似文献   

19.
Jiang JQ  Zeng Z 《Chemosphere》2003,53(1):53-62
This paper builds on the preceding researches to study the effects of the type of clays (montmorillonites K10, KSF) and modifying conditions on the structure and adsorption behavior of resulting clay adsorbents. The raw clays were modified by polymeric Al/Fe species, hexadecyl-trimethylammonium (HDTMA) surfactant and a complex of polymeric Al/Fe-HDTMA. X-ray diffraction spectra was applied to analyze the structure of the raw and modified clays. After modification, the basal spacing of the clays varied, depending on the types of raw clay and modification conditions. Copper and phenol were selected as adsorbates for evaluating the adsorption performance of various clays, which was affected significantly by the types of raw clay and modification conditions. In general the inorganic contaminant (e.g., Cu) tend to be adsorbed by the polymeric Al/Fe modified clay and the organic impurities (e.g., phenol) will be preferably captured by the surfactant modified clay; both due to the specific surface properties resulting from introducing the modifiers. The complex modified clays possessed the ability of adsorbing both inorganic and organic contaminants. In addition, the d 0 0 1 spacing of modified KSF was greater than that of K10; the adsorption performance with modified KSF was thus greater than that with the modified K10. Finally, the ratio of modifiers to the clay (metal:surfactant:clay) has been observed to affect the adsorption performance; the optimal conditions have been defined.  相似文献   

20.
A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at concentrations equal to or less than 1 mg/L and increases adsorption at higher concentrations. Desorption of atrazine in the presence of different sodium dodecylbenzene sulfonate (SDBS) concentrations shows that a portion of the bound pesticide resists desorption in the SDBS free system. However, the addition of SDBS accelerates the desorption of atrazine. Furthermore, the nature of sediment and the contacting sequence of SDBS, at 10 mg/L, with the sediment, also influence the adsorption of atrazine. The conclusions in this study could be explained partially by the effect of the type and concentration of surfactants and the characteristics of sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号