首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Findlay DL 《Ambio》2003,32(3):190-195
It has been widely speculated that controls of SO2 emissions would stimulate recovery of acidified freshwater lakes in Canada, the United States and Europe. Phytoplankton communities from 22 lakes near Killarney Park Ontario, covering a pH range from 4.5-7.7, were studied from 1998-2000 and compared to data from experimentally acidified (pH decreased 6.7 to 4.5) and recovered (pH increased to 6.0) Lake 302 South at the Experimental Lakes Area (ELA), northwestern Ontario to assess recovery from acidification. Based on historical data, pH levels have rebounded to above 6.0 in several lakes in the Killarney area that were previously acidified to pH 5.0-5.5. Phytoplankton biomass was not correlated to pH, but there was a highly significant relationship between species richness and pH. Recovery trajectories were observed in a subset of 6 lakes, combining species diversity data from the present study with historical data. Correspondence analysis indicated that several of the lakes that experienced increased pH have shifted towards phytoplankton assemblages typical of circumneutral environments.  相似文献   

2.
Holt C  Yan ND 《Ambio》2003,32(3):203-207
Despite reductions in atmospheric SO4(2-) deposition and resultant decreases in surface water acidity, widespread biological recovery from acidification has not yet been documented. Temporal trends in crustacean zooplankton species richness (number of species) and composition were examined between 1971-2000 in 46 Killarney Park lakes, Ontario, Canada, to assess the degree of biological recovery in lakes with significant water quality improvements, i.e. pH now > 6, compared to 2 other groups: i) lakes which never acidified; and ii) lakes which are still acidified (pH < 6). Time trends in species richness could not be distinguished among the 3 groups of lakes, nor did changes in species richness indicate recovery. In contrast, the zooplankton community composition of lakes in which the pH increased to above 6, as measured by a multivariate index of species abundances, changed from a "damaged" state to one typical of neutral lakes. Some recovery in composition was also documented for the acidic lakes. While still acidic, the pH levels of these lakes have risen. The extent and pace of recovery in Killarney Provincial Park bodes well for the future of other acidified regions in North America and Europe.  相似文献   

3.
Keller W  Heneberry JH  Dixit SS 《Ambio》2003,32(3):183-189
Lakes in Killarney Park near Sudbury, Ontario, Canada, have shown dramatic water quality changes including general increases in pH and alkalinity, and decreases in SO4(2-), base cations and metals. While some lakes have recovered to pH > 6.0, many are still highly acidic despite decades of improvement. Very high historical S deposition related to emissions from the Sudbury metal smelters dominated the acidification process in this region. However, since the implementation of substantial S emission controls (90%) at the smelters, the Sudbury emissions are no longer the major source of S deposition in the Sudbury area. Wet deposition of SO4(2-) and SO4(2-) concentrations in lakewaters at Killarney now approach values in the Dorset, Ontario, area, about 200 km from Sudbury. This suggests that the S deposition to the Killarney area is now primarily from long-range transport, not from local sources. Studies of Killarney lakes are revealing the complex nature of the chemical recovery process. As lake acidity decreases, other changes including decreased Ca2+ concentrations, increased transparency, and altered thermal regimes may potentially affect some of these ecosystems. It is clear that continuing assessments of the recovery of Killarney lakes, within a multiple-stressor framework, are needed.  相似文献   

4.
Larssen T  Brereton C  Gunn JM 《Ambio》2003,32(3):244-248
During much of the 1900s, the lakes in Killarney Provincial Park have been exposed to high levels of acid deposition due to sulfur emissions from the nearby metal smelters in Sudbury. The sulfur emissions from this large point source have decreased to about 10% of what they were in the 1960s. Lake water quality in Killarney Park has greatly changed in response to reduced emissions, with noticeable declines in sulfate, aluminum and calcium concentrations. Here we apply the dynamic acidification model MAGIC to 3 lakes in Killarney Park. The lakes, which have different buffering capacities and response times, were selected to represent fast, intermediate and slow recovery from acidification. The model was calibrated to match observed data for the lakes and 4 different forecast scenarios for future sulfur deposition reductions were applied. The results indicate that there is still a large potential for improvement in the water quality in Killarney. The recovery time for the different lakes varies greatly. For the lake having the slowest response time several decades are needed for the chemistry to stabilize after implementation of deposition reductions.  相似文献   

5.
Snucins E  Gunn JM 《Ambio》2003,32(3):240-243
We used rehabilitation experiments involving the stocking of 2 native sportfish, lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomieu), in combination with recent fish community surveys, to study the recovery dynamics of fish populations in acid-stressed lakes near Sudbury and Killarney, Ontario, Canada. Population recovery rates differed between the 2 species. Introduced lake trout did poorly in species-rich lakes and exhibited slower growth, lower survival and delayed recruitment. Smallmouth bass, in contrast, readily colonized species-rich lakes. The biomass of natural smallmouth bass recruits increased to reference lake levels within 5 years following water quality recovery and spawning by stocked fish, whereas the biomass of natural lake trout recruits remained well below reference levels 5-15 years after water quality recovery and spawning by adults occurred. We document introductions by anglers of smallmouth bass into acid-damaged lake trout lakes, including some lakes that did not contain bass prior to acidification. This range expansion of a warm-water species (bass) that can alter food-web structure and reduce the growth of a cold-water species (trout), illustrates the potential for the combination of climate warming and species introductions to greatly alter the biological recovery endpoints in acid-stressed lakes.  相似文献   

6.
Reductions in North American sulfur dioxide (SO2) emissions promoted expectations that aquatic ecosystems in southeastern Canada would soon recover from acidification. Only lakes located near smelters that have dramatically reduced emissions approach this expectation. Lakes in the Atlantic provinces, Quebec and Ontario affected only by long-range sources show a general decline in sulfate (SO4(2-)) concentrations, but with a relatively smaller compensating increase in pH or alkalinity. Several factors may contribute to the constrained (or most likely delayed) acidity response: declining base cation concentrations, drought-induced mobilization of SO4(2-), damaged internal alkalinity generation mechanisms, and perhaps increasing nitrate or organic anion levels. Monitoring to detect biological recovery in southeastern Canada is extremely limited, but where it occurs, there is little evidence of recovery outside of the Sudbury/Killarney area. Both the occurrence of Atlantic salmon in Nova Scotia rivers and the breeding success of Common Loons in Ontario lakes are in fact declining although factors beyond acidification also play a role. Chemical and biological models predict that much greater SO2 emission reductions than those presently required by legislation will be needed to promote widespread chemical and latterly, biological recovery. It may be unrealistic to expect that pre-industrial chemical and biological conditions can ever be reestablished in many lakes of southeastern Canada.  相似文献   

7.
Snucins E 《Ambio》2003,32(3):225-229
The recolonization of acid-damaged lakes in Killarney Park, Canada is described for 3 species of benthic invertebrates; 2 mayflies (Stenonema femoratum, Stenacron interpunctatum) and an amphipod (Hyalella azteca). Synoptic surveys of 119 lakes for amphipods and 77 lakes for mayflies were conducted between 1995 and 1997 and defined pH thresholds of 5.6 for S. femoratum and H. azteca and pH 5.3 for S. interpunctatum. In an intensive study of 2 acid-damaged lakes and 2 reference lakes from 1997 to 2002, reestablishment of S. interpunctatum, S. femoratum and H. azteca occurred, when timing of the events could be estimated, less than 4-8 years after pH thresholds for specific taxa were reached. Dispersal of S. interpunctatum to all habitat patches within a lake was completed 3 years after recolonization was detected in the smallest lake (11 ha). It is anticipated that dispersal throughout the largest lake (189 ha) will take much longer. The time lag from estimated pH recovery to reestablishment and subsequent dispersal of mayflies to all suitable habitats within a lake was as much as 11 to 22+ years. The density of S. interpunctatum increased in the recovering lakes to levels higher than in reference lakes, but stable endpoints have not yet been reached during 6 years of monitoring.  相似文献   

8.
Long-term (1987–2012) water quality monitoring in 36 acid-sensitive Swedish lakes shows slow recovery from historic acidification. Overall, strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many acid-sensitive lakes. Base cation concentrations have declined less rapidly than strong acid anion concentrations, leading to an increase in charge balance acid neutralizing capacity. In many lakes, modeled organic acidity is now approximately equal to inorganic acidity. The observed trends in water chemistry suggest lakes may not return to reference conditions. Despite declines in acid deposition, many of these lakes are still acidified. Base cation concentrations continue to decline and alkalinity shows only small increases. A changing climate may further delay recovery by increasing dissolved organic carbon concentrations and sea-salt episodes. More intensive forest harvesting may also hamper recovery by reducing the supply of soil base cations.  相似文献   

9.
Ek AS  Löfgren S  Bergholm J  Qvarfort U 《Ambio》2001,30(2):96-103
Copper production in Falun, central Sweden, has emitted sulfur dioxide (SO2) and metals to the air during at least 1000 years. Emissions peaked in the 17th century when Falun produced 2/3 of the world's copper supply. This area offers unique opportunities to study long-term effects of acid deposition and metal pollution, including recovery following the three centuries of decreasing SO2 and metal deposition. Here we present a 1000-yr perspective on local emissions of SO2, estimated air concentrations and dry deposition of SO2, as well as results on acidification and metal pollution of soils and lakes. Despite a long period when deposition of SO2 exceeded the critical load, soil acidification is limited to the most heavily polluted area 12 km NW and SE from the mine. According to diatom analyses of take sediments, only 8 of 14 lakes have become acidified (0.4-0.8 pH units). None of these lakes show recovery from acidification, probably due to large amounts of sulfate still accumulated in the soils and changes in land use.  相似文献   

10.
Pollard HG  Colbourne JK  Keller W 《Ambio》2003,32(3):214-218
Paleolimnological and molecular genetic techniques were combined to reconstruct the long-term patterns in Daphnia community composition in Hannah Lake--a lake recovering from industrial acidification, metal contamination and faunal extirpation. Like many zooplankters, Daphnia produce diapausing eggs that can remain viable for decades and even over a century. Yet, the appearance of D. mendotae in Hannah Lake during the last two decades is likely the outcome of dispersal from other nearby lakes, not by colonization from the sediment egg-bank. Our genetic tests using PCR, SSCP and sequencing indicate that D. mendotae diapausing eggs are absent within the sediment record of the previous 250 years and that, prior to metal smelting operations in the region, the community was dominated by D. pulicaria. This species shift following the lake's chemical restoration is consistent with earlier historical changes in lake acidity. Environmental fluctuations may have governed community composition throughout Hannah Lake's more ancient past. Extending this molecular-paleolimnological approach to other lakes should help develop more accurate formulations of the biological recovery process.  相似文献   

11.
利用白云石回收污泥厌氧消化液中的磷   总被引:4,自引:1,他引:3  
梅翔  杨旭  张涛  王欣  严伟  何珣  张怡  周宇翔 《环境工程学报》2012,6(11):3809-3816
为经济有效地从污泥厌氧消化液中回收磷,构建了以白云石提供钙镁源的磷回收方法,探讨了磷回收的工艺条件与效果。通过盐酸酸化厌氧消化液以降低其碳酸盐含量,同时利用白云石溶于冷稀盐酸的特性使其钙镁缓慢释放到酸化的厌氧消化液中形成第一步磷回收体系,考察体系酸化pH、白云石与厌氧消化液的固液比以及反应pH对白云石的钙镁释放和磷回收效果的影响;第一步磷回收后的上清液为第二步厌氧消化液磷回收提供钙镁源,研究投加钙磷摩尔比对磷回收效果的影响。实验结果表明,当固液比为5.0时,在酸化pH为4.0~4.5且酸化溶出时间为10 h以及反应pH为9.0的条件下,第一步磷回收产物以磷酸钙盐沉淀为主,厌氧消化液磷回收率及回收产物含磷率(以P2O5计)分别达到99.43%和38.49%;第一步磷回收后的上清液按一定的钙磷摩尔比投加到酸化后的厌氧消化液中进行第二步磷回收,当投加钙磷摩尔比为0.20时,在反应pH为9.0的条件下,回收产物同时含有磷酸钙盐和磷酸铵镁,厌氧消化液中氮、磷回收率分别达到13.19%和90.90%,回收产物氮、磷含量(以P2O5计)分别为0.26%和39.58%;经XRD、XRF、ICP及SEM等分析表征,2步磷回收的产物以磷酸钙盐和磷酸铵镁为主要成分,杂质少。研究表明,利用白云石为钙镁源,通过分别构建不同的磷回收体系可以分步从污泥厌氧消化液中经济有效地回收磷,且磷回收率和回收产物含磷率高。  相似文献   

12.
Walseng B  Yan ND  Schartau AK 《Ambio》2003,32(3):208-213
We identify littoral microcrustacean indicators of acidification in 2 surveys of Canadian Shield lakes conducted 10 years apart. We found a total of 90 cladoceran and copepod species with richness increasing severalfold from acidic to nonacidic lakes. The fauna of the nonacidic lakes differed between the surveys. The 1987 survey employed activity traps, and caught more littoral taxa than the more recent, net-haul-based survey. Similar faunas were identified in the acidified lakes in both surveys, and several good indicator species were identified. For example, Acanthocycops vernalis was restricted to lakes with pH < 6. Sinobosmina sp. was very common but only in lakes with pH > 4.8. Tropocyclops extensus, Mesocyclops edax, and Sida crystallina were commonly found but only at pH > 5, and Chydorus faviformis only at pH > 5.9. These indicators showed promise in gauging the early stages of recovery from acidification in 3 lakes that were included in both surveys.  相似文献   

13.
We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, "recovery" in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites.  相似文献   

14.
Decades of acid deposition have caused acidification of lakes in Sweden. Here we use data for 3000 lakes to run the acidification model MAGIC and estimate historical and future acidification. The results indicate that beginning in about 1920 a progressively larger number of lakes in Sweden fell into the category of “not naturally acidified” (∆pH > 0.4). The peak in acidification was reached about 1985; since then many lakes have recovered in response to lower levels of acid deposition. Further recovery from acidification will occur by the year 2030 given implementation of agreed legislation for emissions of sulphur (S) and nitrogen (N) in Europe. But the number of catchments with soils being depleted in base cations will increase slightly. MAGIC-reconstructed history of acidification of lakes in Sweden agrees well with information on fish populations. Future acidification of Swedish lakes can be influenced by climate change as well as changes in forest harvest practices.  相似文献   

15.
Kerstin Holmgren 《Ambio》2014,43(1):19-29
Since the 1980s, Swedish lakes have in general become less acidified. Assessment of biological recovery is, however, hampered by poor pre-acidification data, confounding effects of climate change, and few lakes with annual sampling of fish and other organisms. Only three critically acidified, but non-limed, lakes had two decades of fish monitoring. The lakes had not yet recovered to pre-industrial chemical targets. Fish had low species richness compared to other organism groups. Roach (Rutilus rutilus) and/or European perch (Perca fluviatilis) were the dominant fish species, and the acid-sensitive roach had been lost from one of the lakes. Calcium decreased, possibly approaching pre-acidification concentrations, but exceeded minimum levels needed to sustain some Daphnia species. High or increasing levels of total organic carbon, likely due to reduced acidification and climate change, might influence the biological communities in unexpected ways, for example, facilitating more frequent occurrence of the invasive algae Gonyostomum semen.  相似文献   

16.
Yan ND  Leung B  Keller W  Arnott SE  Gunn JM  Raddum GG 《Ambio》2003,32(3):165-169
Surface water acidity is decreasing in large areas of Europe and North America in response to reductions in atmospheric S deposition, but the ecological responses to these water-quality improvements are uncertain. Biota are recovering in some lakes and rivers, as water quality improves, but they are not yet recovering in others. To make sense of these different responses, and to foster effective management of the acid rain problem, we need to understand 2 things: i) the sequence of ecological steps needed for biotic communities to recover; and ii) where and how to intervene in this process should recovery stall. Here our purpose is to develop conceptual frameworks to serve these 2 needs. In the first framework, the primarily ecological one, a decision tree highlights the sequence of processes necessary for ecological recovery, linking them with management tools and responses to bottlenecks in the process. These bottlenecks are inadequate water quality, an inadequate supply of colonists to permit establishment, and community-level impediments to recovery dynamics. A second, more management-oriented framework identifies where we can intervene to overcome these bottlenecks, and what research is needed to build the models to operationalize the framework. Our ability to assess the benefits of S emission reduction would be simplified if we had models to predict the rate and extent of ecological recovery from acidification. To build such models we must identify the ecological steps in the recovery process. The frameworks we present will advance us towards this goal.  相似文献   

17.
We examined the effects of acidification on herbivore-algal food web linkages in headwater streams. We determined the structure and abundance of consumer and benthic algal assemblages, and gauged herbivory, in 10 streams along a pH gradient (mean annual pH 4.6-6.4). Biofilm taxonomic composition changed with pH but total abundance did not vary systematically across the gradient. Mayflies and chironomids dominated under circumneutral conditions but declined with increasing acidity and their consumption of algae was strongly reduced. Contrary to expectations, several putative shredder species consumed algae, maintaining the herbivore-algal linkage where specialist grazers could not persist. These shifts in functioning could render the communities of acidified streams resistant to reinvasion when acidity ameliorates and water chemistry is restored to a pre-acidification condition. This hypothesis is discussed in the light of recent trends in the chemistry and biology of the UK Acid Waters Monitoring Network sites.  相似文献   

18.
Modeling recovery of Swedish ecosystems from acidification   总被引:2,自引:0,他引:2  
Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites. While the long-term goal is to protect 95% of the area, implementation of the Gothenburg protocol will protect approximately 75% of forest soils in the long term. After 2030, recovery will be very slow and involve only a limited geographical area. If there had been no emission reductions after 1980, 87% of the forest area would have unwanted soil status in the long term. In 1990, approximately 17% of all Swedish lakes unaffected by agriculture received an acidifying deposition above critical load. This fraction will decrease to 10% in 2010 after implementation of the Gothenburg protocol. The acidified lakes of Sweden will recover faster than the soils. According to the MAGIC model the median pre-industrial ANC of 107 microeq L(-1) in acid sensitive lakes decreased to about 60 microeq L(-1) at the peak of the acidification (1975-1990) and increases to 80 microeq L(-1) by 2010. Further increases were small, only 2 microeq L(-1) between 2010 and 2040. Protecting 95% of the lakes will require further emission reductions below the Gothenburg protocol levels. More than 7000 lakes are limed regularly in Sweden and it is unlikely that this practice can be discontinued in the near future without adverse effects on lake chemistry and biology.  相似文献   

19.
Data from 212 lakes in central Ontario were used to examine the relationship between presence of breeding waterfowl and loons and the following lake characteristics: pH, presence of fish, lake area, dissolved organic carbon (DOC) and total phosphorus (TP) concentration. In univariate analyses, the two fish-eating species preferred large, high pH lakes with fish, while insectivorous species showed little consistent pattern of lake association. Logistic regression analyses confirmed that large lake size and presence of fish were important determinants of presence of piscivores, though the residual effect of pH differed between the two species. Broods of three of the four insectivorous species avoided lakes with fish, and independently showed a positive response to pH. By calculating the probability that fish will be present on a lake of given area and pH, it is possible to estimate the net effect of pH change on these waterfowl. Relationships such as those presented here can, with some assumptions, be linked to models of lake acidification to estimate response of waterfowl to predicted changes in acidic deposition.  相似文献   

20.
Acidification of soils and surface waters caused by acid deposition is still a major problem in southern Scandinavia, despite clear signs of recovery. Besides emission control, liming of lakes, streams, and wetlands is currently used to ameliorate acidification in Sweden. An alternative strategy is forest soil liming to restore the acidified upland soils from which much acidified runoff originates. This cost–benefit analysis compared these liming strategies with a special emphasis on the time perspective for expected benefits. Benefits transfer was used to estimate use values for sport ffishing and nonuse values in terms of existence values. The results show that large-scale forest soil liming is not socioeconomically profitable, while lake liming is, if it is done efficiently—in other words, if only acidified surface waters are treated. The beguiling logic of “solving” an environmental problem at its source (soils), rather than continuing to treat the symptoms (surface waters), is thus misleading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号