首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Vernal pools are vulnerable to loss through development and agricultural and forestry practices owing to their isolation from open water bodies and their small size. Some vernal pool-dependent species are already listed in New England as Endangered, Threatened, or Species of Special Concern. Vernal pool creation is becoming more common in compensatory mitigation as open water ponds, in general, may be easier to create than wooded wetlands. However, research on vernal pool creation is limited. A recent National Research Council study (2001) cites vernal pools as challenging to recreate. We reviewed documentation on 15 vernal pool creation projects in New England that were required by federal regulatory action. Our purpose was to determine whether vernal pool creation for compensatory mitigation in New England replaced key vernal pool functions by assessing project goals and documentation (including mitigation plans, pool design criteria, monitoring protocols, and performance standards). Our results indicate that creation attempts often fail to replicate lost pool functions. Pool design specifications are often based on conjecture rather than on reference wetlands or created pools that function successfully. Project monitoring lacks consistency and reliability, and record keeping by regulatory agencies is inadequate. Strengthening of protection of isolated wetlands in general, and standardization across all aspects of vernal pool creation, is needed to ensure success and to promote conservation of the long-term landscape functions of vernal pools.  相似文献   

2.
ABSTRACT: Naturally formed plunge pools (scour holes) are a common morphologic feature in many urban stream systems where the transition between a pipe and a natural channel occurs. Plunge pools serve as significant stream energy dissipaters, increasing flow resistance and enhancing stream channel stability. Such features may also improve habitat diversity and serve as refugia for stream biota during low flow periods. The morphologic characteristics of several naturally formed plunge pools associated with road crossing culvert outlets in the metropolitan Charlotte, North Carolina, area are presented. Plunge pool dimensions surveyed include maximum depth, length, and width, and longitudinal and side slopes as well as bed material. Culvert outlet dimensions and hydraulic characteristics of the scouring jet for each study site are also reported. Design equations developed from flume studies generally failed to predict the naturally formed plunge pool dimensions. Pool volume was significantly correlated with drainage area, with pool depth being the least sensitive dimension to changes in the magnitude of the scouring flow. The excavation costs for designed plunge pools compare favorably to initial construction costs of traditional culvert outlet riprap aprons.  相似文献   

3.
Decomposition of soil organic carbon (SOC) is a critical component of the global carbon cycle, and accurate estimates of SOC decomposition are important for forest carbon modeling and ultimately for decision making relative to carbon sequestration and mitigation of global climate change. We determined the major pools of SOC in four sites representing major forest types in China: temperate forests at Changbai Mountain (CBM) and Qilian Mountain (QLM), and sub-tropical forests at Yujiang (YJ) and Liping (LP) counties. A 90-day laboratory incubation was conducted to measure CO(2) evolution from forest soils from each site, and data from the incubation study were fitted to a three-pool first-order model that separated mineralizable soil organic carbon into active (C(a)), slow (C(s)) and resistant (C(r)) carbon pools. Results indicate that: (1) the rate of SOC decomposition in the sub-tropical zone was faster than that in the temperature zone, (2) The C(a) pool comprised approximately 1-3% of SOC with an average mean residence time (MRT) of 219 days. The C(s) pool comprised approximately 25-65% with an average MRT of 78 yr. The C(r) pool accounted for approximately 35-80% of SOC, (3) The YJ site in the sub-tropical zone had the greatest C(a) pool and the lowest MRT, while the QLM in the temperature zone had the greatest MRT for both the C(a) and C(s) pools. The results suggest a higher capacity for long-term C sequestration as SOC in temperature forests than in sub-tropical forests.  相似文献   

4.
ABSTRACT: One-hundred-and-sixty step pools were examined that have developed in andesitic, basaltic, or dacitic lavas or in glaciofluvial sediments along several reaches of Soda Creek in the Three Sisters Wilderness of the Oregon High Cascades to determine whether such systems exhibit similar morphology. Pool shapes, sizes, and spacing were measured, and the hydraulic head loss calculated for each pool surface. Lithologic variations among 15 shape categories were not significant, but size attributes - length, depth, and area - of pools were systematically different by rock type. The energy lost at hydraulic jumps did not differ significantly among the four lithologies, suggesting that perhaps step pools represent similar stream channel adjustments in steep terrain.  相似文献   

5.
Use of systems analysis techniques for setting up flow regulation rules for the Oswego River System, a canal-river system with eight lakes, was examined. Two sets of lake regulation rules were proposed: the rule curve for each lake, and the lake-use priority curves for all the lakes. The former specifies balanced allocation of the storage in lakes to conservation pools and flood control pools and, the latter determines lakes releases depending upon the type of operation, the time of the year, and systems objectives. A generalized mathematical representation of the complex, multipurpose, multilake river systems operation is described. With appropriate measures of effectiveness and details of analysis, the problem was then solved with simulation and optimization. Use of the results in assisting basin plan formulation is also discussed.  相似文献   

6.
A fairly realistic nonlinear model of a water reservoir system with multiple uses has been developed based on available data, and the optimum of the system based on the developed model has been determined by the combined use of dynamic programming and the pattern search techniques. Both the simplex search and the Hooke and Jeeves pattern search have been used. The approach in modeling and optimization can treat complex inequality constraints. The benefits or losses resulting from four purposes or uses of water, namely, urban water supply, hydroelectric power generation, irrigation, and recreation, are taken into account in the profit function. Other uses such as flood control, navigation, and fish and wildlife enhancement are considered indirectly by the use of inequality constraints. It appears that the approach developed in this work can treat a water resource allocation problem involving complex inequality constraints.  相似文献   

7.
ABSTRACT The reduction of the liability of pollution to urban water resources is considered as one of the common goals of all elements of our society. To approach the challenge with a sense of realism the probabilistic nature of the performance of pollution control facilities as well as environmental responses must not be ignored and cannot be eliminated. Reliability is defined herein as the measure of effectiveness for the attainment of water quality managerial goals. The objective of this paper is to develop an optimization model for the determination of the best pollution control policies for each treatment facility in terms of the minimization of total regional cost requirements, the quality control requirements, and the reliability desired. A chance-constrained quadratic programming technique coupled with parametric analysis is utilized as the basic solution approach. A practical problem based on the situation existing in the San Antonio River Basin Region of Texas was used for the illustration of this application. The implications resulting from the sensitivity analysis of this model will be discussed.  相似文献   

8.
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA) problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max–min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga–Bhadra river system in India.  相似文献   

9.
ABSTRACT. The problem of modeling and control of water pollution is considered. A general mathematical model, where the pollution effluent is discharged directly into the river, into the lake, or into a bypass pipe leading to an advanced Waste Water Treatment (AWT) plant, is developed. The Water Resource System (WRS) under consideration is decomposed into N subsystems. The pollution effluent input vector to each subsystem includes the water quantity and different water characteristics such as BOD, DO, pH, conductivity, temperature, algae, phosphates, nitrates, etc. Treatment cost functions and quality transition functions as well as system model constraints are introduced, where all functions can be nonlinear. A system Lagrangian is formed to incorporate the system constraints and coupling. The Lagrangian is decomposed into N independent subsystems, and a two level optimization methodology is introduced. Each subsystem is independently and separately minimized at the first level assuming known Lagrange multipliers. At the second level, the total Lagrangian is maximized with respect to the Lagrange multipliers using optimal values for effluent inputs from all subsystems obtained from the first level. Economic interpretation on the Lagrange multipliers reveals that they are merely prices imposed by the central authority (second level) for the pollution caused by the subsystems. Advantages of the multilevel approach are discussed.  相似文献   

10.
The methodology of mass and energy integration is widely applied for reduction of water consumption, which belongs to the area of mass integration, and is also energy integration problem if water is considered an energy source (cooling water and steam). This work presents a study of water-consumption reduction through optimization of the process superstructure. A petroleum refinery water network was analyzed and a solution is proposed to minimize the costs of fresh water and wastewater treatment. Three processes which use water, with three contaminants, were monitored and three potential treatment units are proposed. The procedure was based on relaxation of a non-convex non-linear programming problem into a mixed integer linear programming (MILP). The MILP model was further simplified using heuristic rules and solved by using MATLAB.  相似文献   

11.
A new optimization algorithm by coupling the mutation process to the particle swarm optimization (PSO) is developed in this paper. This algorithm, entitled particle swarm optimization with mutation similarity (PSOMS), is successfully applied to an urban water resources management problem for the large city of Tabriz, Iran. The objective functions of the optimization problem are to minimize the cost, maximize water supply and minimize the environmental hazards. The constraints are physical limits such as pipelines capacity, ground water, the demand and the impact of conservation tools. Due to the parameters uncertainty, the water supply objective is modeled with fuzzy set theory and the objectives are then combined with compromise programming. The resulted single objective is solved using PSOMS, and its efficiency is then compared with the basic PSO and two kinds of genetic algorithms. Among them, PSOMS shows rapid convergence and suitable results compared to other methods. PSOMS is also improved to provide the Pareto frontier, which is needed to proper selecting of the optimal solutions in the uncertain conditions. Finally, the diversity of solutions is checked based on an indicator of the distances between different solutions, which show the efficiency of the PSOMS algorithm with respect to the genetic algorithm. Then by using the non-symmetric Kalai–Smorodinsky method a guideline is provided for comfort selection of the most preferred solution in the Pareto frontier. Based on these outcomes, the multi-objective PSOMS provides more appropriate results needed for urban systems management.  相似文献   

12.
ABSTRACT: A mathematical programming model is proposed to determine economically efficient urban water resource allocation and pricing policy by maximizing the sum of the consumer and producer surplus. The optimization of this nonlinear problem is accomplished by the use of linear programming algorithm. The feasibility of using recycled water for municipal purposes is examined in a planning context. The impact of higher water quality discharge standards on pricing and allocation of water is analyzed and the attractiveness of water reuse option is demonstrated.  相似文献   

13.
The stabilities in water and dry storage of two solid-state disinfectants (3-chloro-4, 4-dimethyl-2-oxazolidinone, agent I, and calcium hypochlorite) have been compared under a variety of conditions. Variables in the study included pH, temperature, and water quality. Agent I is considerably more stable in dry storage and in water, especially at pH 4.5 and 7.0, than is calcium hypochlorite. This is true for solutions of the two compounds in sterile, distilled, deionized, demandfree water or in a synthetic water containing heavy organic load. Prior work in these laboratories concerning use of agent I as a disinfectant for lake water in a laboratory-scale treatment plant had suggested that agent I has considerable potential for use as an alternative to cholorine gas for water disinfection. The present work suggests that agent I is of sufficient stability to be of use as a solid-state disinfectant for swimming pools and for potable water for remote areas.  相似文献   

14.
Water pollution through loss of topsoil from farmland continues to be a major problem, despite nearly 50 years of providing farmers technical and financial assistance for soil and water conservation. The technology for controlling erosion and water pollution is available, but farmers have been slow in implementing control practices. Past research has shown that farmers tend to be unaware of the seriousness of the erosion problem on their own operations. Using a random sample of farmers from central Iowa, the relationship is examined between awareness of a soil erosion problem and the use of conservation tillage. Results indicate that awareness of a soil erosion problem effects the use of conservation tillage, and that awareness can be enhanced by experiential educational strategies such as the development and implementation of a soil and water conservation plan.  相似文献   

15.
ABSTRACT: Access to clean and sufficient amounts of water is a critical problem in many countries. A watershed approach is vital in understanding pollution pathways affecting water resources and in developing participatory solutions. Such integration of information with participatory approaches can lead to more sustainable solutions than traditional “crisis‐to‐crisis” management approaches. This study aims at applying a watershed based joint action approach to manage water resources. Since most watersheds have urban and rural sources of pollution and a wide disparity in access to and use of water, alternative solutions need to take an integrated approach through cooperative actions. An institutional model was applied to seven subwatersheds in Honduras to evaluate various sources and effects of water contamination and water shortages. Two specific pathways of water resources degradation were studied (contamination from coffee pulp manufacturing and urban nonpoint sources) to develop alternative solutions that mitigate downstream impacts of access to clean water. A locally driven joint mechanism to reuse coffee pulp in farming systems is proposed. Such an institutional solution can maximize benefits to both farms and the coffee pulp industry. A combination of education and investment in sanitary facilities in urbanizing areas is proposed to minimize urban sources of water contamination.  相似文献   

16.
Many important groundwater aquifers cross state and national boundaries. The flow of water in these aquifers is not influenced by the boundaries but may be materially influenced by mans activities on one or both sides of a boundary. Interstate and international problems may develop because of excessive groundwater lowering on one side of a boundary affecting water users on the opposite side of the line. Similarly, intensive groundwater development along a surface stream may influence the amount of surface water that flows across a boundary. A third type of problem may develop when pumping on one side of the boundary induces poor quality water into an aquifer on the other side of the boundary. Several specific interstate and international aquifer problems are briefly described.  相似文献   

17.
Abstract: This paper describes an interactive data and model generator that is intended to bridge the gap between the water resource enginner and planner and the mathematical progrmming systems approach to regional water supply planning. The optimization objective is to minimize total annual cost with respect to capital investment and operation and maintenance costs. The matrix generator formulates the necessary hydrologic, demographic and programming problem for system optimization. The interactive program guides the user through the input and optimization segments, totally eliminates the chore of manually structuring the model matrix aides in eliminating errors, and allows use by planners without skill in mathematical programming.  相似文献   

18.
含油污水浮选剂的评选   总被引:1,自引:0,他引:1  
为解决目前炼油厂以聚合铝(PAC)作浮选剂时所出现的试剂用量大、浮选效果差、浮渣量多、除油率低、出水水质差等问题,用江汉油田石油化工厂含油污水为样品,在实验室和现场模拟试验的条件下,评选出能降低出水水中主要污染物浓度的复配优化配方,并对此配方的经济实用性进行了评述。  相似文献   

19.
ABSTRACT: The Nonlinear Risk-Benefit (NRB) Algorithm includes risk as one of the objectives in a multiple-objective optimization problem. The NRB Algorithm is derived by extending the Surrogate Worth Trade-Off method to quadratic programming. This category of problem is common in water resources planning and design, especially multipurpose reservoir systems. Consequently, an example is given using the algorithm for optimally operating a multipurpose reservoir.  相似文献   

20.
ABSTRACT: A nonlinear multilevel transportation model is developed to study large-scale allocations in a water resources system. The model uses a modified transportation matrix formulated with nonlinear cost functions as the basic subregional model and the goal coordination method for multilevel decomposition and optimization of the overall regional system. The model is applied to projected water requirements for Salt Lake County in 1985. Sources of water supply - surface water, ground water, import water, and reuse of reclaimed wastewater on a restricted basis - are available to satisfy water requirements for municipal, industrial, and agricultural sectors in four subregions. The conjugate gradient projection method is used to optimize the first level subregional models having cost functions of the form of C = aXb, and the second level problem is solved using the conjugate gradient method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号