首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The South Prong watershed is a major tributary system of the Sebastian River and adjacent Indian River Lagoon. Continued urbanization of the Sebastian River drainage basin and other watersheds of the Indian River Lagoon is expected to increase runoff and nonpoint source pollutant loads. The St. Johns River Water Management District developed watershed simulation models to estimate potential impacts on the ecological systems of receiving waters and to assist planners in devising strategies to prevent further degradation of water resources. In the South Prong system, a storm water sampling program was carried out to calibrate the water quality components of the watershed model for total suspended solids (TSS), total phosphorous (TP), and total nitrogen (TN). During the period of May to November 1999, water quality and flow data were collected at three locations within the watershed. Two of the sampling stations were located at the downstream end of major watercourses. The third station was located at the watershed outlet. Five storm events were sampled and measured at each station. Sampling was conducted at appropriate intervals to represent the rising limb, peak, and recession limb of each storm event. The simulations were handled by HSPF (Hydrologic Simulation Program‐Fortran). Results include calibration of the hydrology and calibration of the individual storm loads. The hydrologic calibration was continuous over the period 1994 through 1999. Simulated storm runoff, storm loads, and event mean concentrations were compared with their corresponding observed values. The hydrologic calibration showed good results. The outcome of the individual storm calibrations was mixed. Overall, however, the simulated storm loads agreed reasonably well with measured loads for a majority of the storms.  相似文献   

2.
城市化对水环境污染是一个具有普遍性和严重性的问题.城市水环境污染分为点污染和面污染两类.本文针对城市降雨径流污染(城市面源污染)作了系统分析.其内容包括城市化对降雨径流的影响,城市面污染的积累和暴雨径流的冲刷,以及推求城市暴雨径流污染负荷过程的模拟途径.  相似文献   

3.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

4.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

5.
ABSTRACT: Intensive temporal sampling of rainfall, surface runoff and subsurface drainage, and stream flow upstream and downstream of a suburban mall parking lot yielded expected patterns in time and space. Variations in temperature and conductivity showed strong dilution effects, while patterns of nine elemental concentrations in surface runoff showed a flushing effect early in the storm, following by dilution. Heavy nitrate loads in surface runoff were apparently from rainfall, not surficial sources. For the magnitude of storm studied and the existing study site, local impact on stream flow and water quality, like the run-off itself, is rather ephemeral, and dissipates after about five hours.  相似文献   

6.
ABSTRACT: Storm water runoff studies of three small basins (20, 40, and 58 acres) in the Fort Lauderdale area of Florida were conducted by the U.S. Geological Survey in 1974–78. The basins were homogeneously developed with land uses being: commercial, single family residential, and high traffic volume highway. Synchronized data were collected for rainfall, storm water discharge, storm water quality, and bulk precipitation (rainfall plus dry fallout) quality. Analysis of the storm water discharge data showed that most runoff was from impervious areas hydraulically connected to drain inlets. Regression analyses of the storm water discharge and water quality data indicated that storm loads from the single family residential area correlated strongly with peak discharge and length of antecedent dry periods. Storm loads from the highway area correlated strongly with rainfall and less strongly with peak discharge and antecedent dry periods. Storm loads from the commercial area correlated strongly with peak discharge and rainfall, and less strongly with antecedent dry periods. On a unit area basis, the single family residential area yielded the largest loads of nitrogen, phosphorus, and dissolved solids. The commercial area yielded the largest loads of lead, zinc, and chemical oxygen demand. Yields of carbon were about the same for the three areas. Constituent loadings derived directly from the atmosphere were estimated on the basis of bulk precipitation samples and compared with storm runoff loads from the highway and commercial areas.  相似文献   

7.
ABSTRACT: A combined sewer system is a complex system subject to the dynamic stimuli of precipitation, runoff pollution loads, and sanitary wastes. The system response is a random series of pollutant loads to a receiving water. In many localities, these discharges create considerable water quality problems. Mathematical models can and have played a useful role in predicting the behavior of combined sewer systems and evaluating abatement strategies. Based on the authors' experiences over the past several years, this paper explores some of the positive and negative aspects of using deterministic mathematical models to simulate the behavior of combined sewer systems. A case study follows a discussion on modeling objectives, limitations of modeling, model selection, establishing model credibility, and many other considerations necessary in modeling and simulating these systems.  相似文献   

8.
ABSTRACT: Urban stormwater runoff has been recognized as a potential major contributor of pollution to receiving waters. However the projected high costs of control have prompted an examination of the extent to which these impacts have been documented. A nationwide search was conducted for case studies demonstrating a cause-effect linkage between urban runoff and impairment of beneficial uses in receiving waters. The results indicate that numerous definitions of “impacts” are being used and that few substantive data exist to support many of these allegations. Results of a preliminary impact assessment are presented for the 248 urbanized areas of the United States. Then, the results of more recent efforts to assess these impacts in several case studies are described. This assessment demonstrates the critical need for additional short-term and long-term sampling programs.  相似文献   

9.
Abstract: Pollutant loading from storm runoff is considered to be an important component of nonpoint source pollution in urban areas. In developing countries, because of the accelerated urbanization and motorization, storm runoff pollution has become a challenge for improving aquatic environmental quality. An effective storm runoff management plan needs to be developed, and questions concerning how much and which proportion of a storm should be treated need to be answered. In this study, a model is developed to determine the fraction of storm runoff that needs to be treated to meet the discharge standard within a given probability. The model considers that the pollutants can be mobilized during the early stage of a storm. The model is applied to a field study of polycyclic aromatic hydrocarbons (PAHs) in road runoff in Beijing, China. In this case, the probability that the PAH load will be mobilized with suspended sediments by the earlier portion of the flush is 73%. Given the high PAH loading in the study area and the referenced discharge standard, the probability that the entire runoff should be captured and treated is 94%. Thus, urban planners need to consider treatment systems for the majority of the storms in this area, whether the PAH load is in the first flush or not. This methodology can be applied to other regions where PAH loads may result in different management outcomes.  相似文献   

10.
The use of computer-assisted map analysis techniques for prediction of storm runoff from a small urban watershed in the United States is investigated. An automated procedure for calculating input parameters for the US Soil Conservation Service (SCS) method of predicting storm runoff volume and peak timing is presented. Advanced techniques of spatial analysis are used to characterize spatial coincidence, surface configuration and effective hydrologic distance. A limited verification of the automated procedure indicates that the model reasonably characterizes water flow. A sensitivity analysis of basin disaggregation suggests that the SCS method yields increased volume and peak discharge predictions as the watershed is divided into smaller and smaller subunits. As a means to demonstrate the practical application of the automated procedure, a simulation of the effects on surface runoff for a potential residential development is presented.  相似文献   

11.
ABSTRACT: This paper presents a method for determining the causes of salinization of surface waters, in this case the upper Colorado River and its tributaries in Texas. The analysis, which includes a combination of statistical analysis and graphical methods, indicates that among the sources of salt (e.g., saline ground water discharge into surface waters and storm runoff, both surface and shallow subsurface, and washing minerals into surface waters) the major contributor is saline ground water, which discharges into the river and streams. Data also points to salt plume intrusion into the river and streams from sources of salt in the aquifers.  相似文献   

12.
Landscaping paradigms that encourage high‐input, intensively managed and mono‐culture turf/lawn landscapes have raised concerns about water quality. We conducted a watershed‐scale assessment of landscaping practices that included turf, urban, forest, native meadow, and mixed landuse watersheds with a professional golf course and a parking lot. The turf site was moderately managed and had lower fertilizer inputs than those typically used by homeowners and golf courses. Stream water sampling was performed during base flow and storm events. Highest nitrate and total nitrogen concentrations in runoff were observed for the mixed watershed draining the golf course. In contrast, concentrations in base flow from the turf watershed were lower than expected and were comparable to those measured in the surrounding meadow and forest sites. Total nitrogen concentrations from the turf site increased sharply during the first storms following fertilization, suggesting that despite optimal management there exists a risk for nutrient runoff following fertilization. Overall, this study suggests that turf or lawns, when managed properly, pose minimal water quality risk to surface waters. Rate, timing of application, and the type of fertilizer appear to be the key factors affecting water quality. Better education of homeowners and landscaping professionals with regard to these factors may be a cost‐effective strategy to reduce nonpoint source pollution.  相似文献   

13.
ABSTRACT: Storm runoff from four characteristic types of residential roofs and incident rainwater were monitored for 47 storm events over a six-month period at Nacogdoches, Texas, to study water quality conditions for 20 element and four chemical variables. The total element concentration in storm runoff from each roof type was greater than that of rainwater in the open. Differences in element concentrations in storm runoff among the four roof types were statistically significant (α≤ 0.05) with the differences for the wood shingle roof being the greatest and that for terra cotta clay roof being the least. The median concentrations of four element variables exceeded the Texas surface water quality standards, while 12 variables exceeded the standards at least one time in all samples collected. Zinc concentrations violated the Standard ranging from 85.7 percent of the samples for the wood shingle roof to 66.0 percent for the composite shingle, the greatest exceedances of all 24 variables studied. Storm characteristics and gutter maintenance level had some effects on these water quality conditions. The study suggested that roof types can be important to water pollution management programs. More detailed studies on roof water quality in major municipalities are required.  相似文献   

14.
A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.  相似文献   

15.
ABSTRACT: Starting in 1998, a study was conducted to characterize storm water quality from predominant land use types in a coastal watershed along the south central coast of Florida, namely citrus, pasture, urban, natural wetland, row crop, dairy, and golf courses. Sixty‐three sampling sites were located at strategic points on drainage conveyances for each of seven specific land use areas. Runoff samples were collected following storm events that met defined rainfall criteria for a period of 30 months. Nitrogen (N), phosphorus (P), heavy metals, pesticides, and other water quality parameters were determined, and the results were analyzed to compare and characterize land uses as relative sources for these constituents in runoff. Results showed that runoff from most land use types had low dissolved oxygen concentration and that sediment and nutrient concentrations were closely related to land use, particularly to the amount of fertilizer applied in each land use. Among the eight heavy metals tested, copper was the most frequently detected and was mostly associated with runoff from citrus and golf course land uses. High levels of arsenic were also detected in golf course runoff. The most frequently detected pesticide was simazine from citrus. The information and methodologies presented may facilitate pollution source characterization and ecological restoration efforts.  相似文献   

16.
ABSTRACT: This paper describes the Continuous Stormwater Pollution Simulation System (CSPSS) as well as a site-specific application of CSPSS to the Philadelphia urban area and its receiving water, the Delaware Estuary. Conceptually, CSPSS simulates the quantity and quality or urban stormwater runoff, combined sewer overflow, municipal and industrial waste water effuent, and upstream flow on a continuous basis for each time step in the simulation period. In addition, receiving water dissolved oxygen, suspended solids, and lead concentrations resulting from these pollutant sources may be simulated. However, only rceiving water dissolved oxygen (DO) response is considered in this paper. The continuous Do receiving water response model was calibrated to existing conditions usinv observed data at Chester, Pennsylvnia, located on the Delaware Estuary approximately 10 miles down stream from the study area. Average annual pollutant loads to the receiving water were estimated for all major sources and receiving water quality improvements resulting from removal of various portions of these pollutant loads were estimated by application of the calibrated stimultion model. It was found that the removal of oxygen-demanding pollutants from combined sewer overflow and urban stormwater runoff would result in relatively minor improvements in the overall dissoved oxygen resources of the Delaware Estuary; whereas. removal of oxygen demanding pollutants from waste water treatment plant effluent would result in greater improvemens. The results of this investigation can be used along with appropriate economic techniques to identify the most cost-effective mix of point and nonpoint source pollution control measures.  相似文献   

17.
ABSTRACT: Pesticide runoff from dormant sprayed orchards is a major water quality problem in California's Central Valley. During the past several years, diazinon levels in the Sacramento and San Joaquin Rivers have exceeded water quality criteria for aquatic organisms. Orchard water management, via post‐application irrigation, and infiltration enhancement, through the use of a vegetative ground cover, are management practices that are believed to reduce pesticide loading to surface waters. Field experiments were conducted in Davis, California, to measure the effectiveness of these management practices in reducing the toxicity of storm water runoff. Treatments using a vegetative ground cover significantly reduced peak concentrations and cumulative pesticide mass in runoff for first flush experiments compared with bare soil treatments. Post‐application irrigation was found to be an effective means of reducing peak concentrations and cumulative mass in runoff from bare soil treatments, but showed no significant effect on vegetated treatments.  相似文献   

18.
Water quality regulation and litigation have elevated the awareness and need for quantifying water quality and source contributions in watersheds across the USA. In the present study, the regression method, which is typically applied to large (perennial) rivers, was evaluated in its ability to estimate constituent loads (NO(3)-N, total N, PO(4)-P, total P, sediment) on three small (ephemeral) watersheds with different land uses in Texas. Specifically, regression methodology was applied with daily flow data collected with bubbler stage recorders in hydraulic structures and with water quality data collected with four low-frequency sampling strategies: random, rise and fall, peak, and single stage. Estimated loads were compared with measured loads determined in 2001-2004 with an autosampler and high-frequency sampling strategies. Although annual rainfall and runoff volumes were relatively consistent within watersheds during the study period, measured annual nutrient and sediment concentrations and loads varied considerably for the cultivated and mixed watersheds but not for the pasture watershed. Likewise, estimated loads were much better for the pasture watershed than the cultivated and mixed landuse watersheds because of more consistent land management and vegetation type in the pasture watershed, which produced stronger correlations between constituent loads and mean daily flow rates. Load estimates for PO(4)-P were better than for other constituents possibly because PO(4)-P concentrations were less variable within storm events. Correlations between constituent concentrations and mean daily flow rate were poor and not significant for all watersheds, which is different than typically observed in large rivers. The regression method was quite variable in its ability to accurately estimate annual nutrient loads from the study watersheds; however, constituent load estimates were much more accurate for the combined 3-yr period. Thus, it is suggested that for small watersheds, regression-based annual load estimates should be used with caution, whereas long-term estimates can be much more accurate when multiple years of concentration data are available. The predictive ability of the regression method was similar for all of the low-frequency sampling strategies studied; therefore, single-stage or random strategies are recommended for low-frequency storm sampling on small watersheds because of their simplicity.  相似文献   

19.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

20.
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号