首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas chromatography-isotope ratio mass spectrometry (GC-IRMS) has made it possible to analyze natural stable isotope ratios (e.g., (13)C/(12)C, (15)N/(14)N, (2)H/(1)H) of individual organic contaminants in environmental samples. They may be used as fingerprints to infer contamination sources, and may demonstrate, and even quantify, the occurrence of natural contaminant transformation by the enrichment of heavy isotopes that arises from degradation-induced isotope fractionation. This review highlights an additional powerful feature of stable isotope fractionation: the study of environmental transformation mechanisms. Isotope effects reflect the energy difference of isotopologues (i.e., molecules carrying a light versus a heavy isotope in a particular molecular position) when moving from reactant to transition state. Measuring isotope fractionation, therefore, essentially allows a glimpse at transition states! It is shown how such position-specific isotope effects are "diluted out" in the compound average measured by GC-IRMS, and how a careful evaluation in mechanistic scenarios and by dual isotope plots can recover the underlying mechanistic information. The mathematical framework for multistep isotope fractionation in environmental transformations is reviewed. Case studies demonstrate how isotope fractionation changes in the presence of mass transfer, enzymatic commitment to catalysis, multiple chemical reaction steps or limited bioavailability, and how this gives information about the individual process steps. Finally, it is discussed how isotope ratios of individual products evolve in sequential or parallel transformations, and what mechanistic insight they contain. A concluding session gives an outlook on current developments, future research directions and the potential for bridging the gap between laboratory and real world systems.  相似文献   

2.
3.
A cloud point extraction-preconcentration methodology for the speciation analysis of free and organically complexed metal species in natural waters is presented. The method is based on the neutralization of the electrostatic charge of the humate-metal complexes with a positively charged surfactant in a high ionic strength solution environment. The resulting complexes are conveniently solubilized in the micelles of a non-ionic surfactant medium and are thus separated from the bulk aqueous phase. Free metal species are also determined by complexation with a conventional chelating agent under mild conditions. The overall procedure is easy, rapid and allows for a high sample throughput in terms of massive analysis of many samples in the same time period. The method offers substantially low detection limits of 8.5 and 0.9 micrograms l-1 for bound and labile species respectively, with a calibration curve rectilinear in the wide range 40-150 micrograms l-1 for the humate associated and 4-40 micrograms l-1 for the free metal species. The method is free from interferences yielding recoveries in the range 97-102% for various samples of different matrixes.  相似文献   

4.
This research compared the structural and chemical characteristics among dissolved organic matter (DOM) fractions within the same source and among different origins. Samples taken from the Taiping Wastewater Treatment Plant (TWTP) (Harbin, China) and from the Songhuajing River (SR), Heilongjiang Province, China were chosen to represent waters containing DOM of wastewater origin and of natural-water origin, respectively. DOM was fractionated using XAD resins into five fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). The SR fractions were more UV-sensitive and more reactive with chlorine in formation of trihalomethanes (THMs) than the TWTP secondary effluent (TSE) fractions. The aromatic character peaks in the Fourier-transform infrared (FT-IR) spectra of SR fractions were clearer than those of TSE fractions. On the other hand, the peaks of carbohydrates in TSE fractions were more prominent in comparison with SR fractions. In addition, the amide-2 peak was present in the spectra of all the five TSE fractions but not visible in the spectra of SR fractions. The fluorescence results showed that SR DOM fractions contained more fulvic acid-like fluorescent compounds while TSE DOM fractions had higher amounts of protein-like fluorescent components.  相似文献   

5.
The aggregation of 12 nm citrate-stabilized gold nanoparticles (cit-AuNPs) in the presence of four different natural organic matter (NOM) isolates and a monovalent electrolyte (KCl) was evaluated using time-resolved dynamic light scattering. All four NOM isolates stabilized the cit-AuNPs with respect to aggregation. However, specific effects varied among the different NOM isolates. At pH = 6 in 80 mM KCl, low concentrations (<0.25 mg C per L) of large molecular weight Suwannee River Humic Acid (SRHA) was required to stabilize cit-AuNPs, while larger concentrations (>2 mg C per L) of smaller Suwannee River Fulvic Acid (SRFA) were necessary at the same ionic strength. Suwannee River NOM (SRNOM) which contains both SRHA and SRFA behaved in a manner intermediate between the two. Pony Lake Fulvic Acid (PLFA), an autochthonous NOM isolate, provided substantial stability at low concentrations, yet aggregation was induced at NOM concentrations > 2 mg C per L, a trend that is hypothesized to be the result of favourable hydrophobic interactions between coated particles induced at increased surface coverage. For all NOM isolates, it appears that NOM adsorption or conformational changes at the AuNP surfaces result in significant increases in the hydrodynamic diameter that aren't attributable to NP-NP aggregation.  相似文献   

6.
Natural organic matter (NOM) sorption to nanoparticles (NPs) can influence their transport and bioavailability in the aquatic environment. The sorption affinity of NOM to surfaces including NPs is size dependent, and depending on environmental conditions, NOM may enhance or mitigate NPs toxicity. The aim of this study was to investigate the preferential sorption of different-sized fractions of NOM to titanium dioxide (TiO2) NPs. We specifically investigated the influence of pH, ionic strength, and NOM concentration on the extent of this preferential sorption using a constant sorbent concentration (400 mg/L TiO2 NPs). Additionally, sorption of NOM to TiO2 NPs at varying pH was investigated. The nonsorbed NOM was separated from the sorbed, by 50 nm polycarbonate membrane filters and ultracentrifugation. High-performance size exclusion chromatography (HPSEC) was used to determine the average molecular weights of NOM (MWw). Corroborative evidence of preferential sorption of different-sized molecular weight fractions of NOM was obtained from optical techniques such as absorbance and fluorescence spectrophotometry. The total organic carbon was measured by the Total Organic Carbon Analyzer—Shimadzu (TOC-VCPH). The results indicated that there is preferential sorption of larger sized fractions of NOM to TiO2 NPs irrespective of NOM concentration. It was observed that the sorption of larger sized fractions of NOM was much enhanced at lower pH and at higher ionic strength. Both absorbance and fluorescence spectrophotometric techniques gave credible corroborative evidence on the extent of preferential sorption of lager sized fractions of NOM with respect to pH and ionic strength. The sorption results demonstrated higher sorption at lower pH than at higher pH. Overall, the results of this study suggest that the environmental conditions are key factors that can contribute to NOM’s fractional preferential sorption to NPs in the aquatic environment.  相似文献   

7.
A suite of twelve assays has been used to 'fingerprint' dissolved organic matter (DOM). The assays were applied directly to filtered natural water samples. Temperature, pH and conductivity accounted for the environmental conditions on-site. Bulk carbon characteristics were assayed by measuring UV absorbance at 200 and 240 nm, colour in grade Hazen, DOC (dissolved organic carbon), fluorescence (excitation 370 nm, emission 450 nm) and the complexation of phenol itself. Measuring hydroxybenzenes ('monophenolics'), polyhydroxybenzenes ('polyphenolics') and total phenolics with the Gibbs, Prussian Blue and Folin-Ciocalteau assays, respectively, determined the phenolics pool. The methodology was tested on six freshwater sites in North Wales chosen to provide differences in vegetation, land-use and water chemistry and sampled once during each season. A novel approach for the presentation of the data has been developed that combines all range normalised assay results for each site and each season within one polar plot, hence the term 'fingerprint'. The data was also analysed using principal component factor analysis. Assays characterised as determining the chemical properties of DOM contributed to Factor 1 and explained 59% of the variation in the data. Assays apparently determined by the water matrix, contributed to Factor 2 and explained 20% of the variation within the data. The factor scores obtained for each site showed more variation for assays relating to the chemical properties of DOM than to the surrounding water matrix. The methodology was found to detect chemical changes within DOM for each site throughout the year and different responses for different sites.  相似文献   

8.
This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.  相似文献   

9.
10.
Fractionation of metals in natural sediment and suspended particulate matter (SPM) of Tadjan River is investigated. Competitive sorption, sorption capacities of sediment and SPM as well as fractionation of metal-loaded sediment and SPM are also examined. A risk assessment code (RAC) is applied to estimate the risk of heavy metals release into the environment during the sorption process. Results revealed that sediments and SPM containing more than 25 % of clay minerals and higher amounts of calcite have great capacity of metal sorption, particularly for Cu, Ni, and Mn. Assessing the risk of metals release prior to and following sorption tests indicates that RAC of metals would significantly increase from the level of no or low risk in natural sediment and SPM to high or very high risk after sorption. The Langmuir model reveals that the highest affinity for Cu, Mn, and Ni in sediment is the organic fraction. The classic isotherm models of Freundlich and Langmuir can fit the data from chemical extraction studies of adsorbed metals, indicating that although sorption was apparently a physical and chemical process in the river, isotherm models can be used to simulate the sorption and accumulation in different geochemical phases within the particulate matter.  相似文献   

11.
Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all compounds in samples from potable water supplies or laboratory studies of DBP formation. Reduction of oxidizing disinfectants is required since these compounds can kill the bacteria or react with the agar, producing chlorinated byproducts. When mutagens are collected by passing potable water through adsorbing resins, active chlorine compounds react with the resin, producing undesirable mutagenic artifacts. The bioanalytical and chemoanalytical needs of drinking water DBP studies required a suitable reductant. Many of the candidate compounds failed to meet those needs, including 2,4-hexadienoic (sorbic) acid, 2,4-pentanedione (acetylacetone), 2-butenoic (crotonic) acid, 2-butenedioic (maleic and fumaric) acids and buten-2-ol (crotyl alcohol). Candidates were rejected if they (1) reacted too slowly with active chlorine, (2) formed mutagenic byproducts, or (3) interfered in the quantitation of known chlorination DBPs. L-Ascorbic acid reacts rapidly and stoichiometrically with active chlorine and has limited interactions with halogenated DBPs. In this work, we found no interference from L-ascorbic acid or its oxidation product (dehydroascorbic acid) in mutagenicity assays of chlorinated NOM using Salmonella typhimurium TA100, with or without metabolic activation (S9). This was demonstrated for both aqueous solutions of chlorinated NOM and concentrates derived from the involatile, ether-extractable chlorinated byproducts of those solutions.  相似文献   

12.
Modifications are reported to the sequential leaching analytical method for nickel speciation/fractionation specified by Zatka so that larger sample masses can be analyzed. Improvements have been made in the completeness of the sulfide/metallic separation during the peroxide-citrate leach step by use of a larger volume of leachant, a longer leach duration and an orbital shaker. Minimal extraction of metallic nickel in this prolonged sulfidic nickel extraction has been confirmed. An increase in the number of samples analyzed simultaneously using these modifications has resulted in substantial productivity improvements and concomitant lower costs. It is critical for practitioners of sequential leaching techniques to recognize potential limitations and to use professional judgment when interpreting results. For example, results obtained may not be biologically relevant in assessing health risks; the acts of sampling and storage may result in changes in fractionation with time; surface coatings/films may alter the ability of a leachant to react with the target compound; and leaching behaviours may be different for samples differing only in particle size distributions.  相似文献   

13.
14.
The three largest sewage outfalls serving Sydney, New South Wales, Australia are to be moved several kilometres offshore in 1991–2. Changes in their environmental impact due to these moves are likely, but detection relies on a good understanding of the present impacts on the natural environment. Biological surveys in 1986–8 of rocky intertidal sites located directly at the present cliff outfalls have been compared to several (2) other shores some distance away (which serve as controls). This technique of multiple control sites is recommended as a way of including natural variability in the data set. By comparing the community structure at the point of impact to the range among control sites, it is theoretically possible to be more sure of whether purported impacts represent a response out of the ordinary. Effects detected in this way include gross reductions in species diversity, with complete dominace of rocky shore biota by ephemeral green algae and the absence of animals. Zonation disappears close to outfalls. These striking effects were, however, very localised. Denudation experiments suggested great recruitment and productivity of these algae, but the community as a whole is held at an early stage of succession. Such clear alterations attributable to sewage pollution suggests that this ecosystem would be a good indicator of any changes occurring once outfalls are moved offshore. Continued monitoring including multiple control sites is recommended.  相似文献   

15.
Phytopigment estimation has a considerable interest in the evaluation of freshwater bodies' quality, because it takes into account the synergistic effect of nutrients like phosphorus or nitrogen on algal growth producing eutrophication. Furthermore, their increasing concentration constitutes the first step in the formation of biofilms on the surface sediments, adding a new and very important element to the dynamic nature of the surface sediments. In this study the distribution of phytoplankton--in terms of chlorophyll-a, chlorophyll-b, phaeophytin-a, phaeophytin-b, total carotenoids, total chlorophyll, and total phaeophytin--was evaluated in river bed sediments. Samples collected at sites with low levels of nutrients (P,N) and metal concentrations showed lower phytopigment concentrations than those collected at the sampling sites affected by sources of pollution. Phytoplankton concentrations were directly and highly related to the organic matter concentrations--in particular to the humic fraction--as well as to the total nitrogen (N), total phosphorus (P(T)) and available phosphorus (P(A)) concentrations in sediments. In addition, phytoplankton also correlates positively with Cu, Zn, Fe and Al extracted in oxalate, being Cu the variable that most influences the phytopigment growth. These are essential metals for the metabolism of the phytoplankton, so therefore the increase in metal concentrations can increase algal growth, unless they reach toxic levels.  相似文献   

16.
Five methods for aluminium fractionation used in different laboratories in Norway and Finland were compared using six control, 75 soil water and 10 lake water samples. Different fractionation principles [cation exchange, formation of the Pyrocatechol Violet (PCV) or quinolin-8-ol (oxine) complex], types of cation exchanger [Amberlite (Na/H) or Bond Elut (H)], reaction time (from 2.3 s), flow systems (flow injection analysis or segmented flow) and determination principles (molecular absorption spectrometry or ICP-AES) were tested. Determination of the 'labile' fraction was strongly dependent on the method used and the largest differences were observed between the ICP-AES method with cation exchange (Bond Elut H form) and the 'quickly reacting' method (oxine, 2.3 s). Different flow systems, both using cation exchange and determination of the PCV complex but with different reaction times and an extra acidification step, resulted in large differences in the 'reactive' and 'non-labile' fractions determined. However, the determination of the labile fraction gave similar results with both these methods. The two different types of cation exchanger used (with and without pH buffering and with different counter ions) in the ICP-AES methods resulted in differences, mainly because of a smaller 'non-labile' fraction in the non-buffered system. The two flow injection systems (oxine and PCV complexation) showed common trends, which may be connected with the short reaction times used. Comparison with theoretical equilibrium calculations using the model ALCHEMI suggested that the best correlation for the determination of the 'labile' fraction were obtained with the ICP-AES method with an Amberlite column.  相似文献   

17.
18.
Organic acid has been related to nutrient mobilization, mainly in phosphorus (P) insoluble utilization, and therefore enhances P bioavailability. In this study, we examined the effect of low-molecular-weight organic acids (malic, citric, and oxalic acids) on P release of some calcareous soils from western Iran. Fractionation and speciation of P in the soil solution were studied at the initial and final P release. Significantly different quantities of P were extracted by the organic acids. On average the maximum (1,554.9 mg kg-1) and the minimum (1,260.5 mg kg-1) P were extracted by 10 mM oxalic and malic acid, respectively. Power equation described well P release. In the initial stage of P release, the solution samples in soils were supersaturated with respect to hydroxyapatite and β-TCP. At the end of P release, all solutions were undersaturated with phosphate minerals. The percentage of Fe-Al oxide fraction generally increased after P release, while carbonate and residual P fractions were decreased in all organic acids. Compared with the native soils, adding malic and citric acids had no effect on Fe-Al oxide fraction, but oxalic acid significantly reduced this fraction.  相似文献   

19.
Prometryne is a selective herbicide of the s-triazine chemical family. Due to its weak absorption onto soil, it readily leaches down through the soil and contaminates underground water. Application of organic manure to soil has become a widespread practice as a disposal strategy to improve soil properties. In this study, we demonstrated the effect of pig manure compost (PMC) and lake-bed sludge (SL) on the sorption/desorption, mobility and bioavailability of prometryne in soil using comprehensive analysis approaches. Downward movement of prometryne was monitored in the packed soil column. Addition of PMC or SL decreased considerably the mobility and total concentration of prometryne in the soil leachate. Bioavailability analyses with wheat plants revealed that addition of the organic matter reduced accumulation of prometryne in tissues and increased plant elongation and biomass. These results indicate that the organic amendments are effective in modifying adsorption and mobility of the pesticide in soil.  相似文献   

20.
The ozone-initiated oxidation of 2-chloroethanol was followed by monitoring the consumption of the halogenated organic substrate. Gas chromatographic analysis of the ozonated products showed an increase in conversion from about 1 % after 3 h of ozone treatment to about 22 % after 12 h. The yields of major ozonated products identified and quantified namely acetaldehyde, acetic acid, and chloride ion increased proportionately as a function of ozone treatment time. The percent conversion of 2-chloroethanol in the presence of acetic acid or ethyl acetate were found to be higher than those under solvent-free conditions with similar products obtained. The use of activated charcoal during the ozonolyis of 2-chloroethanol showed a significant increase in the percent conversion of the substrate compared to solvent free ozonation. Based on the experimental findings, the overall mechanism for the reaction between 2-chloroethanol and ozone is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号