首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.

This article shows oily sawdust gasification research on countercurrent installation. Experimental research was on a laboratory scale. The main purpose of the experiment was combustible gas production with higher CH4 concentration. Gas concentrations like CO, CO2, CH4, H2, and CnHm determine syngas composition. The technological parameter’s value defines experimental conditions. Value of this was fuel to air ratio. With fuel to air ratio change, syngas composition was a differential phenomenon where it depended on the process parameters like temperature. Additionally, evaluation of methane formation from CO, H2, and CO2 was done. Methanization coefficients were based on CO and CO2 hydrogenation reactions. Component’s activity was in analogs way to syngas components changed.

  相似文献   

2.
Font R  Esperanza M  García AN 《Chemosphere》2003,52(6):1047-1058
Lignin samples, sub-product in the Kraft process of cellulose from eucalyptus wood, were burnt in a laboratory scale furnace at different residence temperatures and with distinct fuel-rich atmospheres. The yields of CO, CO(2), eight light hydrocarbons (methane, ethylene, ethane, propylene, acetylene, butane, etc.) and 60 semi-volatile+volatile compounds (benzene, toluene, ethylbenzene, styrene, indene, naphthalene, dibenzofuran, phenanthrene, chrysene, etc.) were determined, with nominal reactor temperatures between 800 and 1100 degrees C and residence times of the volatiles evolved and formed between 4 and 7 s. The collection of the gases and volatiles evolved was carried out with a Tedlar bag and by XAD-4 resin respectively, comparing the data obtained in both cases. The emission factor (mg/kg) of the CO was between 2500 and 90000, and under the poor-oxygen atmosphere, the emission factors of many by-toxic products were greater than 100 mg/kg. A pyrolysis run was also performed, obtaining emission factors between 30 and 3000 mg/kg, facilitating its identification. The behaviour of different compounds in the combustion runs was discussed considering three groups in accordance with their stability vs. oxygen, and two groups vs. temperature.  相似文献   

3.
A compression ignition engine is used for the study of the fuel (one reference and one hydrotreated) and the fuel/air equivalence ratio influence on the exhaust emissions of specific pollutants. Under the experimental conditions used, seven hydrocarbons, nine aldehydes and three organic acids are detected in the exhaust gas. No alcohols are detected under these conditions, indicating that these compounds are emitted only if they (or probably other oxygenated compounds) are introduced in the fuel. Fuel hydrotreatment decreases most of the exhaust pollutants, the four toxics and also the quantity of the ozone that could be formed from the exhaust gas. It also changes the composition of exhaust gas: it increases the proportion of methane, benzene, formaldehyde, acetaldehyde, acroleine, and propionic acid, while it decreases the proportion of all other pollutants detected. Fuel/air equivalence ratio also decreases most of the exhaust emissions, the emission of the total toxics and the quantity of the ozone that could be formed. It also changes the proportion of each pollutant in exhaust gas: the percentages of methane, benzene, acetone and acetic acid increase, while those of the other pollutants detected decrease. The majority of the specific pollutants detected corresponds to organic acids, followed by hydrocarbons and aldehydes.  相似文献   

4.
Zhang Y  Cai N  Yang J  Xu B 《Chemosphere》2008,73(5):650-656
The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000ppm methane and 0.051gmin(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.  相似文献   

5.
Present methods for the determination of carbon monoxide are discussed including indicator tubes, the iodine pentoxide reaction and measurement by gas chromatography. In the gas chromatographic method an air sample is separated on a gas-solid chromatogra-phic column and the separated CO is converted to methane by hydrogenation at elevated temperature. The separated CO, in the form of methane, is passed into a hydrogen flame detector and measured. The conversion from CO to methane allows the use of a sensitive ionization detector in place of the thermal conductivity cell which is insufficiently sensitive for the measurement of trace amounts of CO. The optimum operating conditions are discussed. It is possible to determine one ppm CO in air. The iodine pentoxide reaction with CO has been combined with electrometric measurement. The iodine liberated is passed into a Ditte cell and the current generated is measured by an electrometerrecorder combination. This method is continuously direct reading with a permanent record. It is suitable for the continuous routine analysis of one ppm CO.  相似文献   

6.
Seo Y  Jo SH  Ryu CK  Yi CK 《Chemosphere》2007,69(5):712-718
CO(2) capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO(2) removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via (13)C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO(2) removal was initially achieved and maintained for about 1-2min at 50 degrees C with 2s gas residence time, while without proper water vapor pretreatment CO(2) removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 degrees C temperature range, while regeneration more effective at the higher temperature over the 135-300 degrees C temperature range. To maintain the initial 90% CO(2) removal, it would be necessary to keep the regeneration temperature higher than about 135 degrees C. The results obtained in this study can be used as basic data for designing and operating a large scale CO(2) capture process with two fluidized-bed reactors.  相似文献   

7.
In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

8.
The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments.  相似文献   

9.
ABSTRACT

In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel.

The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane,and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst,while acetaldehyde and methane were quite resistant to oxidation.  相似文献   

10.
Javed MT  Nimmo W  Gibbs BM 《Chemosphere》2008,70(6):1059-1067
An experimental and modeling investigation has been performed to study the effect of process additives, H2 and CO on NO(x) removal from flue gases by a selective non-catalytic reduction process using urea as a reducing agent. Experiments were performed with a flow reactor in which flue gas was generated by the combustion of propane in air at 3% excess oxygen and the desired levels of initial NO(x) (500ppm) were achieved by doping the flame with ammonia. Experiments were performed throughout the temperature range of interest, i.e. from 850 to 1200 degrees C for investigation of the effects of the process additives on the performance of aqueous urea DeNO(x). Subsequently, computational kinetic modeling with SENKIN code was performed to analyze the performance of urea providing a direct comparison of modeling prediction with experimental measurements. With CO addition, a downwards shift of 215 degrees C in the peak reduction temperature from 1125 to 910 degrees C was observed during the experimentation while the kinetic modeling suggests it to be 150 degrees C, i.e. from 1020 to 870 degrees C. The addition of H2 impairs the peak NO(x) reduction but suggests a low temperature application of the process. A downward shift of 250 degrees C in the peak reduction temperature, from 1020 to 770 degrees C, was observed during kinetic modeling studies. The kinetic modeling shows a good qualitative agreement with the experimental observations and reveals additional information about the process.  相似文献   

11.
A method for removal of CO from exhaust gas using pulsed corona discharge   总被引:2,自引:0,他引:2  
An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.  相似文献   

12.
Abstract

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.  相似文献   

13.
This study investigated the pyrolysis characteristics of sludge from wastewater treatment plants in the petrochemical industry and focused on the pyrolysis kinetics, elemental composition of residue, and volatile organic compounds (VOCs) of exhaust gas. As pyrolysis temperature increased to 773 K, the increasing rate of crude oil production tended to a stable condition. The result indicated that the optimal temperature of crude oil and water mixed production was 773 K. When pyrolysis temperature increased from 673 to 973 K, carbon, oxygen, nitrogen, and hydrogen concentrations of residue decreased and the sulfur concentration of residue increased. The concentrations of benzene, toluene,ethylbenzene, and styrene increased by the increasing pyrolysis temperature. We found that the reaction order of sludge pyrolysis was 2.5 and the activation energy of the reaction was 11.06 kJ/mol. We believe that our pyrolysis system is transitional between devolatilization and combustion.  相似文献   

14.
ABSTRACT

An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal . When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.  相似文献   

15.
Emissions from flares typical of those found at oil-field battery sites in Alberta, Canada, were investigated to determine the degree to which the flared gases were burned and to characterize the products of combustion in the emissions. The study consisted of laboratory, pilot-scale, and field-scale investigations. Combustion of all hydrocarbon fuels in both laboratory and pilot-scale tests produced a complex variety of hydrocarbon products within the flame, primarily by pyrolytic reactions. Acetylene, ethylene, benzene, styrene, ethynyl benzene, and naphthalene were some of the major constituents produced by conversion of more than 10% of the methane within the flames. The majority of the hydrocarbons produced within the flames of pure gas fuels were effectively destroyed in the outer combustion zone, resulting in combustion efficiencies greater than 98% as measured in the emissions. The addition of liquid hydrocarbon fuels or condensates to pure gas streams had the largest effect on impairing the ability of the resulting flame to destroy the pyrolytically produced hydrocarbons, as well as the original hydrocarbon fuels directed to the flare. Crosswinds were also found to reduce the combustion efficiency (CE) of the co-flowing gas/condensate flames by causing more unburned fuel and the pyrolytically produced hydrocarbons to escape into the emissions. Flaring of solution gas at oil-field battery sites was found to burn with an efficiency of 62-82%, depending on either how much fuel was directed to flare or how much liquid hydrocarbon was in the knockout drum. Benzene, styrene, ethynyl benzene, ethynyl-methyl benzenes, toluene, xylenes, acenaphthalene, biphenyl, and fluorene were, in most cases, the most abundant compounds found in any of the emissions examined in the field flare testing. The emissions from sour solution gas flaring also contained reduced sulfur compounds and thiophenes.  相似文献   

16.
ABSTRACT

This study investigated the pyrolysis characteristics of sludge from wastewater treatment plants in the petrochemical industry and focused on the pyrolysis kinetics, elemental composition of residue, and volatile organic compounds (VOCs) of exhaust gas. As pyrolysis temperature increased to 773 K, the increasing rate of crude oil production tended to a stable condition. The result indicated that the optimal temperature of crude oil and water mixed production was 773 K. When pyrolysis temperature increased from 673 to 973 K, carbon, oxygen, nitrogen, and hydrogen concentrations of residue decreased and the sulfur concentration of residue increased. The concentrations of benzene, toluene, ethylbenzene, and styrene increased by the increasing pyrolysis temperature. We found that the reaction order of sludge pyrolysis was 2.5 and the activation energy of the reaction was 11.06 kJ/mol. We believe that our pyrolysis system is transitional between devolatilization and combustion.  相似文献   

17.
Bae SW  Roh SA  Kim SD 《Chemosphere》2006,65(1):170-175
The effect of the additives on the selective non-catalytic reduction (SNCR) reaction has been determined in a three-stage laboratory scale reactor. The optimum reaction temperature is lowered and the reaction temperature window is widened with increasing concentrations of the gas additives (CO, CH4). The optimum reaction temperature is lowered and the maximum NO removal efficiency decreases with increasing the concentration of alcohol additives (CH3OH, C2H5OH). The addition of phenol lowers the optimum reaction temperature about 100-150 degrees C similar to that of the toluene addition. The volatile organic compounds (VOCs: C6H5OH, C7H8) can be utilized in the SNCR process to enhance NO reduction and removed at the same time. A previously proposed simple kinetic model can successfully apply the NO reduction by NH3 and the present additives.  相似文献   

18.
ABSTRACT

Emissions from flares typical of those found at oil-field battery sites in Alberta, Canada, were investigated to determine the degree to which the flared gases were burned and to characterize the products of combustion in the emissions. The study consisted of laboratory, pilot-scale, and field-scale investigations. Combustion of all hydrocarbon fuels in both laboratory and pilot-scale tests produced a complex variety of hydrocarbon products within the flame, primarily by pyrolytic reactions. Acetylene, eth-ylene, benzene, styrene, ethynyl benzene, and naphthalene were some of the major constituents produced by conversion of more than 10% of the methane within the flames. The majority of the hydrocarbons produced within the flames of pure gas fuels were effectively destroyed in the outer combustion zone, resulting in combustion efficiencies greater than 98% as measured in the emissions.

The addition of liquid hydrocarbon fuels or condensates to pure gas streams had the largest effect on impairing the ability of the resulting flame to destroy the pyrolytically produced hydrocarbons, as well as the original hydrocarbon fuels directed to the flare. Crosswinds were also found to reduce the combustion efficiency (CE) of the co-flowing gas/condensate flames by causing more unburned fuel and the pyrolytically produced hydrocarbons to escape into the emissions.

Flaring of solution gas at oil-field battery sites was found to burn with an efficiency of 62-82%, depending on either how much fuel was directed to flare or how much liquid hydrocarbon was in the knockout drum. Benzene, styrene, ethynyl benzene, ethynyl-methyl benzenes, toluene, xylenes, acenaphthalene, biphenyl, and fluorene were, in most cases, the most abundant compounds found in any of the emissions examined in the field flare testing. The emissions from sour solution gas flaring also contained reduced sulfur compounds and thiophenes.  相似文献   

19.
Gas-phase reaction of CFC-12 (CCl2F2) with methane was carried out in a plug flow reactor over the temperature range of 873-1123 K. The major organic halocarbons formed during the reaction were C2F4, C2H2F2, CHClF2, CH3Cl, C3H2F6 and CCl3F. The formation of all products except C2H2F2 decreased with temperature, while the selectivity to C2H2F2 (difluoroethylene) increased with temperature and reached approximately 80% at 1123 K. Under these reaction conditions, methane acts as hydrogen and carbon source, resulting in the formation of an unsaturated C2 hydrofluorocarbon from two C1 precursors.  相似文献   

20.
Germany     
ABSTRACT

The 1988 Alternative Motor Fuels Act and the 1990 Clean Air Act Amendments require examination of the potential to favorably influence air quality by changing the composition of motor vehicle fuels. Motor vehicle tailpipe and evaporative emissions were characterized using laboratory simulations of roadway driving conditions and a variety of vehicle-fuel technologies (reformulated gasoline (RFG), methanol (M85), ethanol (E85), and natural gas (CNG)). Speciated organic compound (with Carter MIR ozone potential), CO, and NOx emission rates and fuel economy were characterized. The Carter MIR ozone potential of combined Federal Test Procedure (FTP) tailpipe and evaporative emissions was reduced more than 90% with CNG relative to RFG, M85, and E85 fuels. FTP toxic compound emissions (benzene, formaldehyde, acetalde-hyde, and 1,3-butadiene) were greater with M85 and E85 fuels than with RFG fuel, and less with CNG fuel than RFG fuel. The most abundant toxic compound was benzene with RFG fuel, formaldehyde with M85 fuel, and acetaldehyde with E85 fuel. FTP MPG fuel economies were reduced with M85 and E85 fuels relative to RFG fuel, consistent with their lower BTU/gal. Energy efficiencies (BTU/mi) were improved with all the alternative fuels relative to RFG. Carter MIR ozone potential was generally reduced with the alternative fuels relative to RFG fuel under REP05 (high speeds and acceleration rates) driving conditions (most significantly with CNG). Toxic aldehyde emissions were reduced under REP05 conditions relative to FTP conditions with all the tested fuels, and toxic benzene emissions were elevated under high acceleration conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号