首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
模拟氮沉降对苗圃地土壤动物群落的影响   总被引:6,自引:0,他引:6  
通过人工喷施氮H4NO3建立了一个模拟氮沉降增加梯度系列,在近18个月的试验处理期间,研究了2003年7月、10月和2004年2月、5月这几个不同季度苗圃试验样地土壤动物群落对氮沉降增加的响应。实验分为5个处理组:对照、低氮、中氮、高氮和倍高氮,分别接受0、5、10、15、30g/(m2·a)的氮沉降量。土壤细菌和真菌的数量总体上随氮处理的加强而持续显著地增长,土壤有机氮含量也持续升高,土壤酸度则不断下降。采样期对土壤动物的个体数量、类群丰度和多样性存在显著的影响,总的来说,土壤动物群落随试验处理期加长而持续增长。土壤动物群落具有显著的垂直分异特征,土壤I层土壤动物个体数量、类群丰度和多样性显著高于II和III层。氮沉降增加对土壤动物群落有明显的影响,表现为施氮处理明显有利于土壤动物群落的发展,但也具有明显的阀值效应。与对照样地相比,各施氮处理样地土壤动物群落水平整体为高,而且随试验处理时间的增加这种差异有加大的趋势;氮沉降增加处理与取样期之间存在显著的交互作用,除了2月取样,中氮处理土壤动物群落水平都处于最高水平,而对照处理一般处于最低水平,这种趋势在最后一次取样中最为明显;氮沉降处理与土壤动物的垂直分布之间也有明显的交互作用:在土壤I层,从对照至倍高氮处理,土壤动物群  相似文献   

2.
氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系   总被引:12,自引:0,他引:12  
研究了南亚热带3种森林生态系统凋落物在N沉降下的分解动态及其与土壤动物群落的关系。选取季风常绿阔叶林、针阔混交林和马尾松林建立野外模拟N沉降样地,实施四个处理组,对照(Control)、低氮(50kg·hm-2·a-1,LowN)、中氮(100kg·hm-2·a-1,MediujmN)和高氮处理(150kg·hm-2·a-1,HighN),利用凋落物网袋法,在18个月的时间内调查分析了凋落物分解过程及其中的土壤动物密度特征。研究结果表明,植被演替阶段对凋落物的分解速度存在影响,季风林凋落物降解速度显著性快于混交林和针叶林(P<0.05);18个月后,季风林各处理地凋落物残留率为0.05、0.14、0.13和0.17,混交林为0.64、0.56和0.62,针叶林为0.66、0.63和0.62。N沉降增加对凋落物分解存在一定影响。且这种影响与植被类型之间存在明显的交互作用。N沉降处理对季风林凋落物分解表现出了一定的抑制作用,而且这种差异随时间推移愈益明显,但在混交林和针叶林内,试验后期凋落物分解受到了N沉降处理的促进作用。在试验后期,尤其是12个月后,凋落物网袋土壤动物密度在不同林地和不同水平N处理下体现了差异化发展趋势。在季风林内,N处理地土壤动物密度受到了明显的抑制;在混交林和针叶林内,低N样地动物密度显示了相比对照样地的明显优势,但在较高强度的中N处理地无论在凋落物的降解速率还是在动物密度上都与对照样地没有明显差别。文章认为,N沉降处理所产生的影响可能受环境N饱和程度的调控。文章还提出,在凋落物分解进程中,土壤动物群落具有“后期进入”特征,这对于进一步准确分析森林凋落物分解进程及土壤动物的贡献有重要意义。  相似文献   

3.
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.  相似文献   

4.
林兰稳  钟继洪  谭军  梁广灶 《生态环境》2012,(10):1678-1682
为了解不同利用方式下土壤动物多样性状况及其演变,对广州市东部郊区的水稻田、蔬菜地、果园旱地和林地4种土地利用类型0~5、5~10、10~15、15~20cm土层进行了土壤动物取样调查,共获得土壤动物24683只,分别隶属于4门10纲23类。统计分析结果表明,土壤动物多样性受土地利用方式的影响明显。果园旱地和林地的个体数显著高于蔬菜地和水稻田,但果园旱地与林地、蔬菜地与水稻田之间无显著差异;果园旱地和林地的土壤动物类群数显著高于水稻田,但果园旱地与林地、林地与蔬菜地、蔬菜地与水稻田之间的差异不显著;林地和果园旱地的复杂性指数显著高于蔬菜地,但林地与果园旱地和水稻田、水稻田与蔬菜地之间的差异不显著(P〈O.05)。土壤动物的个体数和类群数量随着土壤深度的增加而明显减少,但不同土地利用方式下各层土壤动物的丰富度及其随土层加深而递减的程度则有明显不同,其中,林地和果园旱地的土壤动物在不同土层中较丰富,垂直变化比较和缓,水稻田和蔬菜地的类群数和个体数则随土层的加深而急剧减少。  相似文献   

5.
秸秆不同还田方式下蚯蚓对旱作稻田土壤碳、氮的影响   总被引:11,自引:1,他引:11  
王霞  胡锋  李辉信  沈其荣 《生态环境》2003,12(4):462-466
通过两年的田间小区试验,研究了在秸秆的不同施用方式下,蚯蚓(Pheretima sp)对旱作水稻土壤中碳、氮的影响。设置5个处理:秸秆混施,秸秆深施 蚯蚓,秸秆表施,秸秆表施 蚯蚓,对照。2001年夏季播种旱稻,在4个主要生育期采集(0-20cm)土样。2002年再次播种该品种旱稻,采集成熟期(0-20cm)土壤。测定土壤碳、氮以及微生物量碳、氮。结果表明,不论采用何种秸秆还田方式,蚯蚓并不造成土壤有机碳和全氮显著耗减。蚯蚓活动对土壤氨态氮及硝态氮的影响较大;从总体上看,它促进了土壤氮的矿化。不同秸秆施用方式都影响蚯蚓对土壤微生物的作用,在表施秸秆情况下,蚯蚓对微生物量提高最显著。  相似文献   

6.
除草剂对土壤微生物生物量碳、氮及呼吸的影响   总被引:4,自引:0,他引:4  
姚斌  张超兰 《生态环境》2008,17(2):580-583
通过室内培养试验,分别在不同时间取样分析,采用熏蒸-提取法测定土壤微生物生物量碳,提取液中的有机碳采用总有机碳分析仪测定,提取液中的氮采用凯氏消煮法测定;采用直接吸收法滴定测定土壤呼吸作用.研究了阿特拉津、甲磺隆、丁草胺3种除草剂对土壤微生物生物量碳、氮及呼吸强度的影响,揭示了3种除草剂污染的土壤中微生物生物量碳、氮的消长过程及土壤呼吸的动态变化.研究结果显示在较高使用浓度胁迫条件下,培养前20 d 3种除草剂都明显减少土壤微生物生物量碳、氮及抑制土壤呼吸.但这种抑制效应是随着时间而变化的,20 d以后,它们对这些能表征土壤环境生态效应的生物学指标的影响随之降低.甲磺隆对微生物生物量碳、氮及呼吸作用等生物学指标的影响大于阿特拉津和丁草胺也可能与它们在土壤中的降解速率有关.  相似文献   

7.
• Simultaneous C & N removal in Methammox occurs at wide C:N ratio. • Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported. • Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio. • Acetogenic population compensated for ammonia oxidizers at high C:N ratio. • Methanogens increase the plasticity of nitrogen removers at high C:N ratio. High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.  相似文献   

8.
除草剂对土壤氮素循环的影响   总被引:2,自引:0,他引:2  
丁洪  张玉树  郑祥洲 《生态环境》2011,20(4):767-772
土壤微生物参与土壤氮素循环的生物学与生物化学过程,对氮素形态转化与去向产生很大影响。在现代农作物生产上农田普遍施用除草剂,除草剂进入土壤生态环境中影响土壤微生物种群数量、活性和土壤氮素循环过程,在一定程度上改变氮素各去向的比例。因此,除草剂的施用对植物氮素吸收利用和土壤氮的环境释放具有一定效应。文章综述了除草剂对生物固氮、土壤氮矿化与转化、氨挥发、硝化反硝化、温室气体N2O排放、植物的氮吸收利用、土壤氮损失等方面的影响,并提出了今后进一步研究的方向,为减少氮素损失和温室气体排放以及除草剂使用的安全性评价提供参考。  相似文献   

9.
Choi WJ  Chang SX  Bhatti JS 《Ecology》2007,88(2):443-453
The lowering of the water table resulting from peatland drainage may dramatically alter C and N cycling in peatland ecosystems, which contain one-third of the total terrestrial C. In this study, tree annual ring width and C (delta(13)C) and N (delta(15)N) isotope ratios in soil and plant tissues (tree foliage, growth rings, and understory foliage) in a black spruce-tamarack (Picea mariana-Larix laricina) mixed-wood forest were examined to study the effects of drainage on tree growth and C and N dynamics in a minerotrophic peatland in west-central Alberta, Canada. Drainage increased the delta(15)N of soil NH4+ from a range of +0.6% per hundred to +2.9% per hundred to a range of +4.6% per hundred to +7.0% per hundred most likely through increased nitrification following enhanced mineralization. Plant uptake of 15N-enriched NH4+ in the drained treatment resulted in higher plant delta15N (+0.8% per hundred to +1.8% per hundred in the drained plots and -3.9% per hundred to -5.4% per hundred in the undrained plots), and deposition of litterfall N enriched with 15N increased the delta15N of total soil N in the surface layer in the drained (+2.9% per hundred) as compared with that in the undrained plots (+0.6% per hundred). The effect of drainage on foliar delta(13)C was species-specific, i.e., only tamarack showed a considerably less negative foliar delta(13)C in the drained (-28.1% per hundred) than in the undrained plots (-29.1% per hundred), indicating improved water use efficiency (WUE) by drainage. Tree ring area increments were significantly increased following drainage, and delta(13)C and delta(15)N in tree growth rings of both species showed responses to drainage retrospectively. Tree-ring delta(13)C data suggested that drainage improved WUE of both species, with a greater and more prolonged response in tamarack than in black spruce. Our results indicate that drainage caused the studied minerotrophic peatland to become a more open ecosystem in terms of C and N cycling and loss. The effects of forested peatland drainage or drying on C and N balances deserve further research in order to better understand their roles in future global change.  相似文献   

10.
The recovery of ecosystem C and N dynamics after disturbance can be a slow process. Chronosequence approaches offer unique opportunities to use space-for-time substitution to quantify the recovery of ecosystem C and N stocks and estimate the potential of restoration practices for C sequestration. We studied the distribution of C and N stocks in two chronosequences that included long-term cultivated lands, 3- to 26-year-old prairie restorations, and remnant prairie on two related soil series. Results from the two chronosequences did not vary significantly and were combined. Based on modeling predictions, the recovery rates of different ecosystem components varied greatly. Overall, C stocks recovered faster than N stocks, but both C and N stocks recovered more rapidly for aboveground vegetation than for any other ecosystem component. Aboveground C and N reached 95% of remnant levels in only 13 years and 21 years, respectively, after planting to native vegetation. Belowground plant C and N recovered several decades later, while microbial biomass C, soil organic C (SOC), and total soil N recovered on a century timescale. In the cultivated fields, SOC concentrations were depleted within the surface 25 cm, coinciding with the depth of plowing, but cultivation apparently led to redistribution of soil C, increasing SOC stocks deeper in the soil profile. The restoration of prairie vegetation was effective at rebuilding soil organic matter (SOM) in the surface soil. Accrual rates were maintained at 43 g C x m(-2) x yr(-1) and 3 g N x m(-2) x yr(-1) in the surface 0.16 Mg/m2 soil mass during the first 26 years of restoration and were predicted to reach 50% of their storage potential (3500 g C/m2) in the first 100 years. We conclude that restoration of tallgrass prairie vegetation can restore SOM lost through cultivation and has the potential to sequester relatively large amounts of SOC over a sustained period of time. Whether restored prairies can retain the C apparently transferred to the subsoil by cultivation practices remains to be seen.  相似文献   

11.
The gametogenic cycles of Nephtys hombergii Audouin et M. Edw. and N. caeca Fabricius are described. Both species are polytelic (=discrete, iteroparous) and breed in their second and subsequent years. They spawn in May in the Tyne estuary. After spawning, N. hombergii retains a large number of gametocytes, which are ultimately resorbed. A new generation of gametocytes is proliferated by September and mature gametes accumulate during the winter months. Gametic development is not well synchronised.  相似文献   

12.
中国水稻土碳循环研究进展   总被引:9,自引:1,他引:9  
许信旺  潘根兴 《生态环境》2005,14(6):961-966
文章首先分析了水稻土在碳循环研究中的地位和重要性,进而对我目水稻土碳循环的研究现状作了较为详尽的阐述,对其主要研究结论进行了深入的剖析。中国大而积的水稻土自1980年以来显示出有机碳库增加现象,说明水稻田对大气CO2可能产生汇效应。水耕熟化过程足有机碳的积累过程,水稻土的碳密度是早作土碳密度的2-3倍。水稻土的同碳能力与土壤的微团聚体的粒径有关。但对于水稻土中有机碳的分布和结合状态与农业管理措施、水稻土质量变化、农业生态环境变化的关系仍不清楚。因而建议就这一问题从土壤物理学、化学和生物学的相互作朋与土壤微团聚体中矿物质、有机质和微生物的相互结合关系的层面上进行多学科研究。同时提出了今后我困水稻土碳循环的重点研究方向和领域,即从整体和系统的角度来研究碳循环和平衡,从不同的时空区域来研究碳循环的过程和强度。  相似文献   

13.
The development and formation of chemical elements in soil are affected not only by parent material, climate, biology, and topology factors, but also by human activities. As the main elements supporting life on earth system, the C, N, P, S cycles in soil have been altered by human activity through land-use change, agricultural intensification, and use of fossil fuels. The present study attempts to analyze whether and how a connection can be made between macroscopical control and microcosmic analysis, to estimate the impacts of human activities on C, N, P, S elements in soil, and to determine a way to describe the spatial relationship between C, N, P, S in soil and human activities, by means of landscape geochemical theories and methods. In addition, the disturbances of human activities on C, N, P, S are explored through the analysis of the spatial relationship between human disturbed landscapes and element anomalies, thereby determining the diversified rules of the effects. The study results show that the rules of different landscapes influencing C, N, P, S elements are diversified, and that the C element is closely related to city landscapes; furthermore, the elements N, P, and S are shown to be closely related to river landscapes; the relationships between mine landscapes and the elements C, N, P, S are apparent; the relationships between the elements C, N, P, S and road landscapes are quite close, which shows that road landscapes have significant effects on these elements. Therefore, the conclusion is drawn that the response mechanism analysis of human disturbance and soil chemical element aggregation is feasible, based on the landscape geochemical theories and methods. The spatial information techniques, such as remote sensing and geographic information systems, are effective for research on soil element migration.  相似文献   

14.
The spatial distribution of the C/N ratios and variations in δ13C and δ15N of suspended particulate matter were used to characterise their source in Asia’s largest brackish water lagoon, Chilika, India. In addition, the significance of re-mineralised nutrients in the primary productivity of the shallow lagoon was also determined through quantification of the subsurface nitrogen uptake conditions at two relatively stable locations in the lagoon. The results indicated that the influence of terrestrial organic matter was the maximum in the northern sector and was relatively limited at the central and southern part of the lagoon. In situ 15N uptake experiments (daytime) under biogeochemically stable conditions revealed that the N uptake by phytoplankton ranged between 0.24 and 1.01?mM?m?3?h?1 during pre-monsoon and post-monsoon seasons. New production and regenerated production in the shallow lagoon was also estimated by calculating f-ratios (ratio of nitrate assimilation by phytoplankton to total nitrogenous nutrient assimilation, have been estimated), which varied from 0.52 in the post-monsoon to 0.38 in the pre-monsoon. Lowering of the f-ratio from post- to pre-monsoon indicated a dominance of mineralisation over the new production.  相似文献   

15.
Today, Antarctica exhibits some of the harshest environmental conditions for life on Earth. During the last glacial period, Antarctic terrestrial and marine life was challenged by even more extreme environmental conditions. During the present interglacial period, polar life in the Southern Ocean is sustained mainly by large-scale primary production. We argue that during the last glacial period, faunal populations in the Antarctic were limited to very few areas of local marine productivity (polynyas), because complete, multiannual sea-ice and ice shelf coverage shut down most of the Southern Ocean productivity within today's seasonal sea-ice zone. Both marine sediments containing significant numbers of planktonic and benthic foraminifera and fossil bird stomach oil deposits in the adjacent Antarctic hinterland provide indirect evidence for the existence of polynyas during the last glacial period. We advocate that the existence of productive oases in the form of polynyas during glacial periods was essential for the survival of marine and most higher-trophic terrestrial fauna. Reduced to such refuges, much of today's life in the high Antarctic realm might have hung by a thread during the last glacial period, because limited resources available to the food web restricted the abundance and productivity of both Antarctic terrestrial and marine life.  相似文献   

16.
保护性耕作对土壤有机碳、氮储量的影响   总被引:6,自引:0,他引:6  
以辽宁彰武县保护性耕作示范推广基地土壤为研究对象,通过实地调查和取样分析,对比研究了传统犁耕和6年免耕秸秆覆盖条件下的土壤有机碳、氮储量,为广泛评价保护性耕作的土壤碳、氮截获功能和合理选择农业耕作方式提供科学依据。研究结果表明,与犁耕相比,免耕覆盖不同程度地提高了0~5cm和5~15cm土层的有机碳、氮储量,对15cm以下土层没有影响,从而增加了0~100cm土体总的有机碳、氮储量,证明了免耕覆盖的土壤碳、氮截获功能,年均截获率分别为1.37Mg·hm-2和0.84Mg·hm-2。有机碳、氮在犁耕土壤0~30cm剖面的垂直分布较为均匀,免耕覆盖后则发生明显的分层,产生表聚现象。  相似文献   

17.
保护性耕作对土壤有机碳、氮储量的影响   总被引:1,自引:0,他引:1  
胡宁  娄翼来  梁雷 《生态环境》2010,(1):223-226
以辽宁彰武县保护性耕作示范推广基地土壤为研究对象,通过实地调查和取样分析,对比研究了传统犁耕和6年免耕秸秆覆盖条件下的土壤有机碳、氮储量,为广泛评价保护性耕作的土壤碳、氮截获功能和合理选择农业耕作方式提供科学依据。研究结果表明,与犁耕相比,免耕覆盖不同程度地提高了0-5cm和5~15cm土层的有机碳、氮储量,对15cm以下土层没有影响,从而增加了0~100em土体总的有机碳、氮储量,证明了免耕覆盖的土壤碳、氮截获功能,年均截获率分别为1.37Mg·hm-2和0.84Mg·hm-2有机碳、氮在犁耕土壤0~30cm剖面的垂直分布较为均匀,免耕覆盖后则发生明显的分层,产生表聚现象。  相似文献   

18.
Industrial agriculture is yearly responsible for the loss of 55–100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts. In particular, the management of soil organic matter (SOM) is a key factor influencing C and N cycles. Soil microorganisms play a central role in SOM dynamics. For instance, microbial diversity may explain up to 77 % of carbon mineralisation activities. However, soil microbial diversity is actually rarely taken into account in models of C and N dynamics. Here, we review the influence of microbial diversity on C and N dynamics, and the integration of microbial diversity in soil C and N models. We found that a gain of microbial richness and evenness enhances soil C and N dynamics on the average, though the improvement of C and N dynamics depends on the composition of microbial community. We reviewed 50 models integrating soil microbial diversity. More than 90 % of models integrate microbial diversity with discrete compartments representing conceptual functional groups (64 %) or identified taxonomic groups interacting in a food web (28 %). Half of the models have not been tested against an empirical dataset while the other half mainly consider fixed parameters. This is due to the difficulty to link taxonomic and functional diversity.  相似文献   

19.
Samples of fish were collected by beach seine throughout the shallow waters of the large Peel-Harvey estuarine system (south-western Australia) in the wet (June to November) and dry periods (December to May) between August 1979 and July 1981. The number of species, density and biomass declined with distance from the estuary mouth and rose with increasing temperature and salinity. Both classification and ordination distinguished the faunal composition of the saline reaches of the rivers from that of the narrow Entrance Channel and two large basins (Peel Inlet and Harvey Estuary). Classification also separated the fauna of the riverine group into wet- and dry-period components, and divided samples taken in the Entrance Channel from those in the basins. Differences between the faunal composition of the Peel Inlet and its tributary rivers were related to differences in salinity regime. The riverine fauna was subjected to much more variable and lower minimum salinities. Species characteristic of the rivers included teleosts such as Atherinosoma wallacei and Amniataba caudavittatus, which are estuarine sensu stricto in southwestern Australia, the semi-anadromous Nematalosa vlaminghi and juveniles of the marine Mugil cephalus. The species diagnostic of the wet periods in the rivers were the estuarine species A. wallacei and Favonigobius suppositus, while the dry periods were characterised by the marine species Atherinomorus ogilbyi and Sillago schomburgkii. Marine species also characterised the Entrance Channel (Favonigobius lateralis, Sillago bassensis), whereas the indicators in Peel Inlet and Harvey Estuary were Hyporhamphus regularis and Apogon rueppellii, both of which can pass through the whole of their life cycle in estuarine as well as marine environments.  相似文献   

20.
A total of 66814 fish larvae, representing 37 families and 74 species, were collected in samples taken monthly between January 1986 and April 1987 from 13 sites located at frequent intervals throughout the large Swan Estuary in south-western Australia. The Gobiidae was the most abundant family, comprising 88.2% of the total number of larvae, followed by the Clupeidae (3.4%), Engraulididae (2.9%) and Blenniidae (1.0%). The most abundant species were Pseudogobius olorum (53.3%), Arenigobius bifrenatus (31.2%) and Engraulis australis (2.9%). Abundance of fish larvae in the lower, middle and upper regions of the estuary each reached a maximum between mid-spring and early summer, 2 to 4 mo before the attainment of maximum temperatures. Larvae of species such as Nematalosa vlaminghi and Apogon rueppellii were collected only between November and February, whereas those of others such as P. olorum, E. australis and Leptatherina wallacei were present over many months. The times and locations of capture of larvae have been related to the distribution and breeding periods of the adults of these species. The mean monthly number of species was far greater in the lower than upper estuary (14.7 vs 2.7), whereas the reverse was true for mean monthly concentration (42 vs 197 larvae per 100 m3). Classification, using the abundance of each of the 74 species recorded at the different sites, showed that the composition of the larval fish fauna in the lower, middle and upper estuary differed markedly from each other. Most larvae caught in the lower estuary belonged to marine species, whereas those in the upper estuary almost exclusively represented species that spawn within the estuary. The fact that the larvae of the 59 species of marine teleosts recorded during this study were restricted mainly to the lower estuary, and yet contributed only 6.2% to the total numbers for the whole estuary, helps to account for the relatively high species diversity in this region. The lack of penetration of many of these larvae beyond the first 12.5 km of the estuary presumably reflects the weak tidal effect in the wide basins of the middle estuary and saline regions of the tributary rivers. The larvae of the 13 teleosts that typically spawn within the estuary contributed 93.8% to the total numbers of larvae. Most of these estuarine-spawned larvae belong to teleosts that deposit demersal eggs and/or exhibit parental care (egg-guarding and oral and pouch-brooding), characteristics which would maximize their chances of retention within the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号