首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

2.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

3.
Abstract: Customary management systems (i.e., management systems that limit the use of marine resources), such as rotational fisheries closures, can limit harvest of resources. Nevertheless, the explicit goals of customary management are often to influence fish behavior (in particular flight distance, i.e., distance at which an organism begins to flee an approaching threat), rather than fish abundance. We explored whether the flight distance of reef fishes targeted by local artisanal fishers differed between a customary closure and fished reefs. We also examined whether flight distance of these species affected fishing success and accuracy of underwater visual census (UVC) between customary closed areas and areas open to fishing. Several species demonstrated significant differences in flight distance between areas, indicating that fishing activity may increase flight distance. These relatively long flight distances mean that in fished areas most target species may stay out of the range of spear fishers. In addition, mean flight distances for all species both inside and outside the customary‐closure area were substantially smaller than the observation distance of an observer conducting a belt‐transect UVC (mean [SE]= 8.8 m [0.48]). For targeted species that showed little ability to evade spear fishers, customary closures may be a vital management technique. Our results show that customary closures can have a substantial, positive effect on resource availability and that conventional UVC techniques may be insensitive to changes in flight behavior of fishes associated with fishing. We argue that short, periodic openings of customary closures may allow the health of the fish community to be maintained and local fishers to effectively harvest fishes.  相似文献   

4.
Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.  相似文献   

5.
Visual assessments of topographic habitat structure and benthos on coral reefs were appraised using quantitative data collected from 16 replicate surveys within each of 21 sites on Seychelles reefs. Results from visual assessments of reef benthos were similar to those obtained using techniques frequently used to assess benthic complexity and composition. Visual estimates of habitat topography were correlated with rugosity, reef height and holes of 10–70 cm diameter, whilst visual estimates of benthic composition were very similar to those obtained from line intercept transects. Visual estimates of topography correlated strongly with species richness of fish communities and explained 42% of the variation in these data. The relationship between visual estimates of topography and species richness is strongest with fish 10–30 cm total length (TL), abundance of fish within this size category also correlating positively with topographic visual assessments. Visual techniques are prone to observer bias, however with regular training they can be used to quickly provide a reliable and effective means of assessing habitat complexity and benthos on coral reefs.  相似文献   

6.
Bonin MC  Almany GR  Jones GP 《Ecology》2011,92(7):1503-1512
Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.  相似文献   

7.
Abstract: Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one‐quarter to one‐third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea‐dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity‐based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.  相似文献   

8.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

9.
Abstract:  Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.  相似文献   

10.
A simple field technique to obtain a gross estimate of the surface area of a quadrat on a coral reef is described. This measure, termed the substrate rugosity index, was determined, in conjunction with two other substrate variables (vertical relief and coral species richness), in a series of 4 quadrats (10 to 40 m depth) along 4 transects. The mean substrate rugosity and vertical relief of a quadrat were highly correlated. A correlation analysis was made of the substrate variables and several reef fish community parameters (species richness, number of fishes and diversity). Species richness was highly correlated with substrate rugosity. This relationship was tested in two experimental quadrats and the results were generally in accord with those predicted. Stratification of the fish communities by body size revealed that the correlation with substrate rugosity was scale-dependent. The fish community parameters were poorly correlated with percentage substrate cover by corals (ramose and glomerate) and by sand. A significant area effect was determined for two species of sand-dwelling goby.  相似文献   

11.
Abstract: Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species’ spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected‐area site selections were derived from a rarity–complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species‐habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat‐mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space‐borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.  相似文献   

12.
By 2004, Belize was exhibiting classic fishing down of the food web. Groupers (Serranidae) and snappers (Lutjanidae) were scarce and fisheries turned to parrotfishes (Scarinae), leading to a 41% decline in their biomass. Several policies were enacted in 2009–2010, including a moratorium on fishing parrotfish and a new marine park with no-take areas. Using a 20-year time series on reef fish and benthos, we evaluated the impact of these policies approximately 10 years after their implementation. Establishment of the Southwater Caye Marine Reserve led to a recovery of snapper at 2 out of 3 sites, but there was no evidence of recovery outside the reserve. Snapper populations in an older reserve continued to increase, implying that at least 9 years is required for their recovery. Despite concerns over the feasibility of banning parrotfish harvest once it has become a dominant fin fishery, parrotfishes returned and exceeded biomass levels prior to the fishery. The majority of these changes involved an increase in parrotfish density; species composition and adult body size generally exhibited little change. Recovery occurred equally well in reserves and areas open to other forms of fishing, implying strong compliance. Temporal trends in parrotfish grazing intensity were strongly negatively associated with the cover of macroalgae, which by 2018 had fallen to the lowest levels observed since measurements began in 1998. Coral populations remained resilient and continued to exhibit periods of net recovery after disturbance. We found that a moratorium on parrotfish harvesting is feasible and appears to help constrain macroalgae, which can otherwise impede coral resilience.  相似文献   

13.
The aim of the study was to provide comparable estimates of abundance of herbivorous reef fishes at temperate and tropical localities using a standardized methodology. Faunas of herbivorous fish were sampled on the rocky reefs of temperate northern New Zealand and on the coral reefs of the northern Great Barrier Reef (GBR), Australia, and the San Blas Archipelago in the Caribbean. A pilot study established the most appropriate habitat setting and the scale and magnitude of replication for the sampling program in temperate waters. Herbivorous fishes, including members of families endemic to the southern hemisphere (Odacidae and Aplodactylidae), were most abundant in turbulent, shallow water (0 to 6 m) and had patchy distributions within this habitat. A hierarchical sampling program using 10-min transect counts within the 0 to 6 m depth stratum examined abundance patterns at a range of spatial scales including mainland and island coasts, localities separated by up to 100 km and sites separated by up to 10 km. This program identified a characteristic fauna of seven species of herbivorous fishes with mean total abundances ranging from 23 to 30 individuals per 10-min transect. Species composition of the fauna varied between islands and coasts. A similar methodology was used to sample the major families of herbivorous fish in a number of sites in each of the tropical regions. These sampling programs revealed a fauna dominated by acanthurids and scarids in both the GBR and Caribbean localities. Estimates of abundance from these regions were similar, with a mean of 108 individuals recorded on the GBR and 129 per 10-min transect in the Caribbean. Species richness varied between each region, with 44 taxa recorded from the GBR and 11 from the Caribbean. Abundances of temperate water herbivores in New Zealand were found to be 75 to 80% lower than those recorded from shallow water habitats sampled on coral reefs. This was not related to species richness, since both New Zealand and the Caribbean locality had patterns of low richness. We suggest that the differences in abundance found by our study between temperate and tropical regions are not restricted to herbivorous fishes, but are representative of general latitudinal trends in reef fish faunas. Received: 4 November 1996 / Accepted: 15 December 1996  相似文献   

14.
Abstract: Most of the world's coral reefs line the coasts of developing nations, where impacts from intense and destructive fishing practices form critical conservation issues for managers. Overfishing of herbivorous fishes can cause phase shifts to macroalgal dominance, and fishers’ use of rocks as anchors lowers coral cover, giving further competitive advantage to macroalgae. Overfishing and anchoring have been studied extensively, but the role of their interaction in lowering coral reef resilience has not been quantified formally. We analyzed the combined effects of overfishing and rock anchoring on a range of reef habitat types—varying from high coral and low macroalgae cover to low coral and high macroalgae cover—in a marine park in Indonesia. We parameterized a model of coral and algal dynamics with three intensities of anchoring and fishing pressure. Results of the model indicated that damage caused by rock anchoring was equal to or possibly more devastating to coral reefs in the area than the impact of overfishing. This is an important outcome for local managers, who usually have the funds to distribute less‐damaging anchors, but normally are unable to patrol regularly and effectively enough to reduce the impact of overfishing. We translated model results into an interactive visual tool that allows managers to explore the benefits of reducing anchoring frequency and fishing pressure. The potential consequences of inaction were made clear: the likelihood that any of the reef habitats will be dominated in the future by macroalgae rather than corals depends on reducing anchoring frequency, fishing pressure, or both. The tool provides a platform for strengthened relationships between managers and conservationists and can facilitate the uptake of recommendations regarding resource allocation and management actions. Conservation efforts for coral reefs in developing nations are likely to benefit from transforming model projections of habitat condition into tools local managers can understand and interact with.  相似文献   

15.
Coral reef fisheries support the livelihoods of millions of people but have been severely and negatively affected by anthropogenic activities. We conducted a systematic review of published data on the biomass of coral reef fishes to explore how the condition of reef fisheries is related to the density of local human populations, proximity of the reef to markets, and key environmental variables (including broad geomorphologic reef type, reef area, and net productivity). When only population density and environmental covariates were considered, high variability in fisheries conditions at low human population densities resulted in relatively weak explanatory models. The presence or absence of human settlements, habitat type, and distance to fish markets provided a much stronger explanatory model for the condition of reef fisheries. Fish biomass remained relatively low within 14 km of markets, then biomass increased exponentially as distance from reefs to markets increased. Our results suggest the need for an increased science and policy focus on markets as both a key driver of the condition of reef fisheries and a potential source of solutions. Efectos Globales de la Densidad de Población Humana Local y la Distancia a los Mercados sobre la Condición de Pesquerías en Arrecifes de Coral  相似文献   

16.
Although many papers report the effects of no-take marine protected areas (MPAs or reserves), scientifically rigorous empirical studies are rare, particularly for temperate reef fishes. We evaluated the responses of fish populations to protection from fishing in reserves by comparing densities and sizes inside and outside of five no-take reserves in southern California, USA. Our results are robust because we compared responses across multiple rocky-reef reserves in two different years and controlled for possible site differences by (a) ensuring that habitat characteristics were the same inside and outside reserves, and (b) sampling species that are not targeted, which would not be expected to have a direct response to fishing. We compared fish density and size and calculated biomass and egg production across all five sites. Fishes targeted by recreational and/or commercial fisheries consistently exhibited increases in mean density (150%), size (30%), biomass (440%), and egg production (730%) inside reserves. Reserve effects were greatest for legal-sized targeted fishes: significantly greater densities were found exclusively inside reserves for targeted species (580%), the largest size classes existed only inside reserves, and mean biomass was 1000% higher. These responses were unlikely to have been caused by habitat differences because there were no significant differences in habitat characteristics between reserve and control locations. Densities of non-targeted species did not differ between reserve and non-reserve locations, further supporting the conclusions that differences in targeted species between reserve and control locations were due to harvesting rather than site-specific effects. Although MPAs cannot replace traditional fisheries management, the concentration of increased biomass and egg production is a unique MPA benefit that serves both reserves and fisheries. Scientifically rigorous studies that include multiple reserves, such as this study, are needed to inform management and policy decisions.  相似文献   

17.
Continuing coral‐reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral‐reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern‐day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.  相似文献   

18.
White JW  Warner RR 《Ecology》2007,88(12):3044-3054
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence.  相似文献   

19.
The sustained decline in marine fisheries worldwide underscores the need to understand and monitor fisheries trends and fisher behavior. Recreational fisheries are unique in that they are not subject to the typical drivers that influence commercial and artisanal fisheries (e.g., markets or food security). Nevertheless, although exposed to a different set of drivers (i.e., interest or relaxation), recreational fisheries can contribute to fishery declines. Recreational fisheries are also difficult to assess due to an absence of past monitoring and traditional fisheries data. Therefore, we utilized a nontraditional data source (a chronology of spearfishing publications) to document historical trends in recreational spearfishing in Australia between 1952 and 2009. We extracted data on reported fish captures, advertising, and spearfisher commentary and used regression models and ordination analyses to assess historical change. The proportion of coastal fish captures reported declined approximately 80%, whereas the proportion of coral reef and pelagic fish reports increased 1750% and 560%, respectively. Catch composition shifted markedly from coastal temperate or subtropical fishes during the 1950s to 1970s to coral reef and pelagic species in the 1990s to 2000s. Advertising data and commentary by spearfishers indicated that pelagic fish species became desired targets. The mean weight of trophy coral reef fishes also declined significantly over the study period (from approximately 30–8 kg). Recreational fishing presents a highly dynamic social–ecological interface and a challenge for management. Our results emphasize the need for regulatory agencies to work closely with recreational fishing bodies to observe fisher behavior, detect shifts in target species or fishing intensity, and adapt regulatory measures. Tendencias Dinámicas de Captura en la Historia de la Pesca Recreativa con Arpón en Australia  相似文献   

20.
Abstract:  We investigated traditional coral reef management practices at Ahus Island, Manus Province, Papua New Guinea, to evaluate their social role in the community and potential to conserve reef ecosystems. For generations, Ahus Islanders have prohibited spear and net fishing within six delineated areas of their reef lagoon. One to three times per year, fish are briefly harvested from the restricted areas to provide food for ceremonial occasions. Underwater visual censuses of fishes revealed a significantly greater biomass and average size of target species within the restricted areas (205 kg/ha ± 20 [SE]; 102 mm TL [total length]± 0.7) compared with areas without fishing restrictions (127 kg/ha ± 13 SE; 85 mm TL ± 0.7). We estimated the biomass of fish removed during one of the harvest events was 5 to 10% of the available biomass within the restricted area, and in underwater visual surveys conducted before and after a harvesting event we detected no effect of harvesting on fish stocks. Compliance with the fishing restriction is attributed to its perceived legitimacy, its ability to provide the community with direct and indirect benefits, and its reflection of local socioeconomic circumstances. Limited-take closure systems that can serve the needs of a community may provide a viable conservation alternative in situations where compliance with fully closed protected-area regulations is low and resources for proper enforcement are untenable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号