首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   

3.
Private lands provide key habitat for imperiled species and are core components of function protectected area networks; yet, their incorporation into national and regional conservation planning has been challenging. Identifying locations where private landowners are likely to participate in conservation initiatives can help avoid conflict and clarify trade-offs between ecological benefits and sociopolitical costs. Empirical, spatially explicit assessment of the factors associated with conservation on private land is an emerging tool for identifying future conservation opportunities. However, most data on private land conservation are voluntarily reported and incomplete, which complicates these assessments. We used a novel application of occupancy models to analyze the occurrence of conservation easements on private land. We compared multiple formulations of occupancy models with a logistic regression model to predict the locations of conservation easements based on a spatially explicit social–ecological systems framework. We combined a simulation experiment with a case study of easement data in Idaho and Montana (United States) to illustrate the utility of the occupancy framework for modeling conservation on private land. Occupancy models that explicitly accounted for variation in reporting produced estimates of predictors that were substantially less biased than estimates produced by logistic regression under all simulated conditions. Occupancy models produced estimates for the 6 predictors we evaluated in our case study that were larger in magnitude, but less certain than those produced by logistic regression. These results suggest that occupancy models result in qualitatively different inferences regarding the effects of predictors on conservation easement occurrence than logistic regression and highlight the importance of integrating variable and incomplete reporting of participation in empirical analysis of conservation initiatives. Failure to do so can lead to emphasizing the wrong social, institutional, and environmental factors that enable conservation and underestimating conservation opportunities in landscapes where social norms or institutional constraints inhibit reporting.  相似文献   

4.
Wet grassland populations of wading birds in the United Kingdom have declined severely since 1990. To help mitigate these declines, the Royal Society for the Protection of Birds has restored and managed lowland wet grassland nature reserves to benefit these and other species. However, the impact of these reserves on bird population trends has not been evaluated experimentally due to a lack of control populations. We compared population trends from 1994 to 2018 among 5 bird species of conservation concern that breed on these nature reserves with counterfactual trends created from matched breeding bird survey observations. We compared reserve trends with 3 different counterfactuals based on different scenarios of how reserve populations could have developed in the absence of conservation. Effects of conservation interventions were positive for all 4 targeted wading bird species: Lapwing (Vanellus vanellus), Redshank (Tringa totanus), Curlew (Numenius arquata), and Snipe (Gallinago gallinago). There was no positive effect of conservation interventions on reserves for the passerine, Yellow Wagtail (Motacilla flava). Our approach using monitoring data to produce valid counterfactual controls is a broadly applicable method allowing large-scale evaluation of conservation impact.  相似文献   

5.
Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape-scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner-city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity-nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine-fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.  相似文献   

6.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   

7.
Species interactions matter to conservation. Setting an ambitious recovery target for a species requires considering the size, density, and demographic structure of its populations such that they fulfill the interactions, roles, and functions of the species in the ecosystems in which they are embedded. A recently proposed framework for an International Union for Conservation of Nature Green List of Species formalizes this requirement by defining a fully recovered species in terms of representation, viability, and functionality. Defining and quantifying ecological function from the viewpoint of species recovery is challenging in concept and application, but also an opportunity to insert ecological theory into conservation practice. We propose 2 complementary approaches to assessing a species’ ecological functions: confirmation (listing interactions of the species, identifying ecological processes and other species involved in these interactions, and quantifying the extent to which the species contributes to the identified ecological process) and elimination (inferring functionality by ruling out symptoms of reduced functionality, analogous to the red-list approach that focuses on symptoms of reduced viability). Despite the challenges, incorporation of functionality into species recovery planning is possible in most cases and it is essential to a conservation vision that goes beyond preventing extinctions and aims to restore a species to levels beyond what is required for its viability. This vision focuses on conservation and recovery at the species level and sees species as embedded in ecosystems, influencing and being influenced by the processes in those ecosystems. Thus, it connects and integrates conservation at the species and ecosystem levels.  相似文献   

8.
Long-term population declines have elevated recovery of grassland avifauna to among the highest conservation priorities in North America. Because most of the Great Plains is privately owned, recovery of grassland bird populations depends on voluntary conservation with strong partnerships between private landowners and resource professionals. Despite large areas enrolled in voluntary practices through U.S. Department of Agriculture's Lesser Prairie-chicken (Tympanuchus pallidicinctus) Initiative (LPCI), the effectiveness of Farm Bill investments for meeting wildlife conservation goals remains an open question. Our objectives were to evaluate extents to which Conservation Reserve Program (CRP) and LPCI-grazing practices influence population densities of grassland birds; estimate relative contributions of practices to regional bird populations; and evaluate percentages of populations conserved relative to vulnerability of species. We designed a large-scale impact-reference study and used the Integrated Monitoring in Bird Conservation Regions program to evaluate bird population targets of the Playa Lakes Joint Venture. We used point transect distance sampling to estimate density and population size for 35 species of grassland birds on private lands enrolled in native or introduced CRP plantings and LPCI-prescribed grazing. Treatment effects indicated CRP plantings increased densities of three grassland obligates vulnerable to habitat loss, and LPCI grazing increased densities of four species requiring heterogeneity in dense, tall-grass structure (α = 0.1). Population estimates in 2016 indicated the practices conserved breeding habitat for 4.5 million birds (90% CI: 4.0–5.1), and increased population sizes of 16 species , totaling 1.8 million birds (CI: 1.4–2.4). Conservation practices on private land benefited the most vulnerable grassland obligate species (AICc weight = 0.53). By addressing habitat loss and degradation in agricultural landscapes, conservation on private land provides a solution to declining avifauna of North America and scales up to meet population recovery goals for the most imperiled grassland birds.  相似文献   

9.
Anthropogenic impacts have reduced natural areas but increased the area of anthropogenic landscapes. There is debate about whether anthropogenic landscapes (e.g., farmlands, orchards, and fish ponds) provide alternatives to natural habitat and under what circumstances. We considered whether anthropogenic landscapes can mitigate population declines for waterbirds. We collected data on population trends and biological traits of 1203 populations of 579 species across the planet. Using Bayesian generalized linear mixed models, we tested whether the ability of a species to use an anthropogenic landscape can predict population trends of waterbird globally and of species of conservation concern. Anthropogenic landscapes benefited population maintenance of common but not less-common species. Conversely, the use of anthropogenic landscapes was associated with population declines for threatened species. Our findings delineate some limitations to the ability of anthropogenic landscapes to mitigate population declines, suggesting that the maintenance of global waterbird populations depends on protecting remaining natural areas and improving the habitat quality in anthropogenic landscapes. Article impact statement: Protecting natural areas and improving the quality of anthropogenic landscapes as habitat are both needed to achieve effective conservation.  相似文献   

10.
Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9–51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.  相似文献   

11.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

12.
The availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD-seq data set for 717 P. californicus individuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm-temperature-associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.  相似文献   

13.
Landscape-scale conservation that considers metapopulation dynamics will be essential for preventing declines of species facing multiple threats to their survival. Toward this end, we developed a novel approach that combines occurrence records, spatial–environmental data, and genetic information to model habitat, connectivity, and patterns of genetic structure and link spatial attributes to underlying ecological mechanisms. Using the threatened northern quoll (Dasyurus hallucatus) as a case study, we applied this approach to address the need for conservation decision-making tools that promote resilient metapopulations of this threatened species in the Pilbara, Western Australia, a multiuse landscape that is a hotspot for biodiversity and mining. Habitat and connectivity were predicted by different landscape characteristics. Whereas habitat suitability was overwhelmingly driven by terrain ruggedness, dispersal was facilitated by proximity to watercourses. Although there is limited evidence for major physical barriers in the Pilbara, areas with high silt and clay content (i.e., alluvial and hardpan plains) showed high resistance to dispersal. Climate subtlety shaped distributions and patterns of genetic turnover, suggesting the potential for local adaptation. By understanding these spatial–environmental associations and linking them to life-history and metapopulation dynamics, we highlight opportunities to provide targeted species management. To support this, we have created habitat, connectivity, and genetic uniqueness maps for conservation decision-making in the region. These tools have the potential to provide a more holistic approach to conservation in multiuse landscapes globally.  相似文献   

14.
In recent decades, there has been an increasing emphasis on proactive efforts to conserve species being considered for listing under the U.S. Endangered Species Act (ESA) before they are listed (i.e., preemptive conservation). These efforts, which depend on voluntary actions by public and private land managers across the species’ range, aim to conserve species while avoiding regulatory costs associated with ESA listing. We collected data for a set of social, economic, environmental, and institutional factors that we hypothesized would influence voluntary decisions to promote or inhibit preemptive conservation of species under consideration for ESA listing. We used logistic regression to estimate the association of these factors with preemptive conservation outcomes based on data for a set of species that entered the ESA listing process and were either officially listed (n = 314) or preemptively conserved (n = 73) from 1996 to 2018. Factors significantly associated with precluded listing due to preemptive conservation included high baseline conservation status, low proportion of private land across the species’ range, small total range size, exposure to specific types of threats, and species’ range extending over several states. These results highlight strategies that can help improve conservation outcomes, such as allocating resources for imperiled species earlier in the listing process, addressing specific threats, and expanding incentives and coordination mechanisms for conservation on private lands.  相似文献   

15.
Conservation efforts often focus on umbrella species whose distributions overlap with many other flora and fauna. However, because biodiversity is affected by different threats that are spatially variable, focusing only on the geographic range overlap of species may not be sufficient in allocating the necessary actions needed to efficiently abate threats. We developed a problem-based method for prioritizing conservation actions for umbrella species that maximizes the total number of flora and fauna benefiting from management while considering threats, actions, and costs. We tested our new method by assessing the performance of the Australian federal government's umbrella prioritization list, which identifies 73 umbrella species as priorities for conservation attention. Our results show that the federal government priority list benefits only 6% of all Australia's threatened terrestrial species. This could be increased to benefit nearly half (or 46%) of all threatened terrestrial species for the same budget of AU$550 million/year if more suitable umbrella species were chosen. This results in a 7-fold increase in management efficiency. We believe nations around the world can markedly improve the selection of prioritized umbrella species for conservation action with this transparent, quantitative, and objective prioritization approach.  相似文献   

16.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

17.
Abstract: Species occurrence in a habitat patch depends on local habitat and the amount of that habitat in the wider landscape. We used predictions from empirical landscape studies to set quantitative conservation criteria and targets in a multispecies and multiscale conservation planning effort. We used regression analyses to compare species richness and occurrence of five red‐listed lichens on 50 ancient oaks (Quercus robur; 120–140 cm in diameter) with the density of ancient oaks in circles of varying radius from each individual oak. Species richness and the occurrence of three of the five species were best explained by increasing density of oaks within 0.5 km; one species was best explained by the density of oaks within 2 km, and another was best predicted by the density of oaks within 5 km. The minimum numbers of ancient oaks required for “successful conservation” was defined as the number of oaks required to obtain a predicted local occurrence of 50% for all species included or a predicted local occurrence of 80% for all species included. These numbers of oaks were calculated for two relevant landscape scales (1 km2 and 13 km2) that corresponded to various species responses, in such a way that calculations also accounted for local number of oaks. Ten and seven of the 50 ancient oaks surveyed were situated in landscapes that already fulfilled criteria for successful conservation when the 50% and 80% criteria, respectively, were used to define the level of successful conservation. For cost‐efficient conservation, oak stands in the landscapes most suitable for successful conservation should be prioritized for conservation and management (e.g., grazing and planting of new oaks) at the expense of oak stands situated elsewhere.  相似文献   

18.
Biodiversity loss is driven by human behavior, but there is uncertainty about the effectiveness of behavior-change programs in delivering benefits to biodiversity. To demonstrate their value, the biodiversity benefits and cost-effectiveness of behavior changes that directly or indirectly affect biodiversity need to be quantified. We adapted a structured decision-making prioritization tool to determine the potential biodiversity benefits of behavior changes. As a case study, we examined two hypothetical behavior-change programs––wildlife gardening and cat containment––by asking experts to consider the behaviors associated with these programs that directly and indirectly affect biodiversity. We assessed benefits to southern brown bandicoot (Isoodon obesulus) and superb fairy-wren (Malurus cyaneus) by eliciting from experts estimates of the probability of each species persisting in the landscape given a range of behavior-change scenarios in which uptake of the behaviors varied. We then compared these estimates to a business-as-usual scenario to determine the relative biodiversity benefit and cost-effectiveness of each scenario. Experts projected that the behavior-change programs would benefit biodiversity and that benefits would rise with increasing uptake of the target behaviors. Biodiversity benefits were also predicted to accrue through indirect behaviors, although experts disagreed about the magnitude of additional benefit provided. Scenarios that combined the two behavior-change programs were estimated to provide the greatest benefits to species and be most cost-effective. Our method could be used in other contexts and potentially at different scales and advances the use of prioritization tools to guide conservation behavior-change programs.  相似文献   

19.
Widespread human action and behavior change is needed to achieve many conservation goals. Doing so at the requisite scale and pace will require the efficient delivery of outreach campaigns. Conservation gains will be greatest when efforts are directed toward places of high conservation value (or need) and tailored to critical actors. Recent strategic conservation planning has relied primarily on spatial assessments of biophysical attributes, largely ignoring the human dimensions. Elsewhere, marketers, political campaigns, and others use microtargeting—predictive analytics of big data—to identify people most likely to respond positively to particular messages or interventions. Conservationists have not yet widely capitalized on these techniques. To investigate the effectiveness of microtargeting to improve conservation, we developed a propensity model to predict restoration behavior among 203,645 private landowners in a 5,200,000 ha study area in the Chesapeake Bay Watershed (U.S.A.). To isolate the additional value microtargeting may offer beyond geospatial prioritization, we analyzed a new high-resolution land-cover data set and cadastral data to identify private owners of riparian areas needing restoration. Subsequently, we developed and evaluated a restoration propensity model based on a database of landowners who had conducted restoration in the past and those who had not (n = 4978). Model validation in a parallel database (n = 4989) showed owners with the highest scorers for propensity to conduct restoration (i.e., top decile) were over twice as likely as average landowners to have conducted restoration (135%). These results demonstrate that microtargeting techniques can dramatically increase the efficiency and efficacy of conservation programs, above and beyond the advances offered by biophysical prioritizations alone, as well as facilitate more robust research of many social–ecological systems.  相似文献   

20.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号