首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Social media data are being increasingly used in conservation science to study human–nature interactions. User-generated content, such as images, video, text, and audio, and the associated metadata can be used to assess such interactions. A number of social media platforms provide free access to user-generated social media content. However, similar to any research involving people, scientific investigations based on social media data require compliance with highest standards of data privacy and data protection, even when data are publicly available. Should social media data be misused, the risks to individual users' privacy and well-being can be substantial. We investigated the legal basis for using social media data while ensuring data subjects’ rights through a case study based on the European Union's General Data Protection Regulation. The risks associated with using social media data in research include accidental and purposeful misidentification that has the potential to cause psychological or physical harm to an identified person. To collect, store, protect, share, and manage social media data in a way that prevents potential risks to users involved, one should minimize data, anonymize data, and follow strict data management procedure. Risk-based approaches, such as a data privacy impact assessment, can be used to identify and minimize privacy risks to social media users, to demonstrate accountability and to comply with data protection legislation. We recommend that conservation scientists carefully consider our recommendations in devising their research objectives so as to facilitate responsible use of social media data in conservation science research, for example, in conservation culturomics and investigations of illegal wildlife trade online.  相似文献   

2.
Increasingly intensive strategies to maintain biodiversity and ecosystem function are being deployed in response to global anthropogenic threats, including intentionally introducing and eradicating species via assisted migration, rewilding, biological control, invasive species eradications, and gene drives. These actions are highly contentious because of their potential for unintended consequences. We conducted a global literature review of these conservation actions to quantify how often unintended outcomes occur and to elucidate their underlying causes. To evaluate conservation outcomes, we developed a community assessment framework for systematically mapping the range of possible interaction types for 111 case studies. Applying this tool, we quantified the number of interaction types considered in each study and documented the nature and strength of intended and unintended outcomes. Intended outcomes were reported in 51% of cases, a combination of intended outcomes and unintended outcomes in 26%, and strictly unintended outcomes in 10%. Hence, unintended outcomes were reported in 36% of all cases evaluated. In evaluating overall conservations outcomes (weighing intended vs. unintended effects), some unintended effects were fairly innocuous relative to the conservation objective, whereas others resulted in serious unintended consequences in recipient communities. Studies that assessed a greater number of community interactions with the target species reported unintended outcomes more often, suggesting that unintended consequences may be underreported due to insufficient vetting. Most reported unintended outcomes arose from direct effects (68%) or simple density-mediated or indirect effects (25%) linked to the target species. Only a few documented cases arose from more complex interaction pathways (7%). Therefore, most unintended outcomes involved simple interactions that could be predicted and mitigated through more formal vetting. Our community assessment framework provides a tool for screening future conservation actions by mapping the recipient community interaction web to identify and mitigate unintended outcomes from intentional species introductions and eradications for conservation.  相似文献   

3.
The knowledge-action gap in conservation science and practice occurs when research outputs do not result in actions to protect or restore biodiversity. Among the diverse and complex reasons for this gap, three barriers are fundamental: knowledge is often unavailable to practitioners and challenging to interpret or difficult to use or both. Problems of availability, interpretability, and useability are solvable with open science practices. We considered the benefits and challenges of three open science practices for use by conservation scientists and practitioners. First, open access publishing makes the scientific literature available to all. Second, open materials (detailed methods, data, code, and software) increase the transparency and use of research findings. Third, open education resources allow conservation scientists and practitioners to acquire the skills needed to use research outputs. The long-term adoption of open science practices would help researchers and practitioners achieve conservation goals more quickly and efficiently and reduce inequities in information sharing. However, short-term costs for individual researchers (insufficient institutional incentives to engage in open science and knowledge mobilization) remain a challenge. We caution against a passive approach to sharing that simply involves making information available. We advocate a proactive stance toward transparency, communication, collaboration, and capacity building that involves seeking out and engaging with potential users to maximize the environmental and societal impact of conservation science.  相似文献   

4.
Ongoing loss of biological diversity is primarily the result of unsustainable human behavior. Thus, the long-term success of biodiversity conservation depends on a thorough understanding of human–nature interactions. Such interactions are ubiquitous but vary greatly in time and space and are difficult to monitor efficiently at large spatial scales. However, the Information Age also provides new opportunities to better understand human–nature interactions because many aspects of daily life are recorded in a variety of digital formats. The emerging field of conservation culturomics aims to take advantage of digital data sources and methods to study human–nature interactions and thus to provide new tools for studying conservation at relevant temporal and spatial scales. Nevertheless, technical challenges associated with the identification, access, and analysis of relevant data hamper the wider adoption of culturomics methods. To help overcome these barriers, we propose a conservation culturomics research framework that addresses data acquisition, analysis, and inherent biases. The main sources of culturomic data include web pages, social media, and other digital platforms from which metrics of content and engagement can be obtained. Obtaining raw data from these platforms is usually desirable but requires careful consideration of how to access, store, and prepare the data for analysis. Methods for data analysis include network approaches to explore connections between topics, time-series analysis for temporal data, and spatial modeling to highlight spatial patterns. Outstanding challenges associated with culturomics research include issues of interdisciplinarity, ethics, data biases, and validation. The practical guidance we offer will help conservation researchers and practitioners identify and obtain the necessary data and carry out appropriate analyses for their specific questions, thus facilitating the wider adoption of culturomics approaches for conservation applications.  相似文献   

5.
Conservation planning tends to focus on protecting species’ ranges or landscape connectivity but seldom both—particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species’ ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species’ ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.  相似文献   

6.
Over the past 5 decades, scientists have been documenting negative anthropogenic environmental change, expressing increasing alarm, and urging dramatic socioecological transformation in response. A host of international meetings have been held, but the erosion of biological diversity continues to accelerate. Why, then, has no effective political action been taken? We contend that part of the answer may lie in the anthropocentric ethical premises and moral rhetoric typically deployed in the cause of conservation. We further argue that it is essential to advance moral arguments for biodiversity conservation that are not just based on perceived human interests but on ecocentric values, namely, convictions that species and ecosystems have value and interests that should be respected regardless of whether they serve human needs and aspirations. A broader array of moral rationales for biodiversity conservation, we conclude, would be more likely to lead to effective plans, adopted and enforced by governments, designed to conserve biological diversity. A good place to start in this regard would be to explicitly incorporate ecocentric values into the recommendations that will be made at the conclusion of the 15th meeting of the parties to the Convention on Biological Diversity, scheduled to be held in October 2020.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号