首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Marine protected areas (MPAs) are the preferred tool for preventing marine biodiversity loss, as reflected in international protected area targets. Although the area covered by MPAs is expanding, there is a concern that opposition from resource users is driving them into already low-use locations, whereas high-pressure areas remain unprotected, which has serious implications for biodiversity conservation. We tested the spatial relationships between different human-induced pressures on marine biodiversity and global MPAs. We used global, modeled pressure data and the World Database on Protected Areas to calculate the levels of 15 different human-induced pressures inside and outside the world's MPAs. We fitted binomial generalized linear models to the data to determine whether each pressure had a positive or negative effect on the likelihood of an area being protected and whether this effect changed with different categories of protection. Pelagic and artisanal fishing, shipping, and introductions of invasive species by ships had a negative relationship with protection, and this relationship persisted under even the least restrictive categories of protection (e.g., protected areas classified as category VI under the International Union for Conservation of Nature, a category that permits sustainable use). In contrast, pressures from dispersed, diffusive sources (e.g., pollution and ocean acidification) had positive relationships with protection. Our results showed that MPAs are systematically established in areas where there is low political opposition, limiting the capacity of existing MPAs to manage key drivers of biodiversity loss. We suggest that conservation efforts focus on biodiversity outcomes and effective reduction of pressures rather than prescribing area-based targets, and that alternative approaches to conservation are needed in areas where protection is not feasible.  相似文献   

2.
Marine protected areas (MPAs) are a critical defense against biodiversity loss in the world's oceans, but to realize near-term conservation benefits, they must be established where major threats to biodiversity occur and can be mitigated. We quantified the degree to which MPA establishment has targeted stoppable threats (i.e., threats that can be abated through effectively managed MPAs alone) by combining spatially explicit marine biodiversity threat data in 2008 and 2013 and information on the location and potential of MPAs to halt threats. We calculated an impact metric to determine whether countries are protecting proportionally more high- or low-threat ecoregions and compared observed values with random protected-area allocation. We found that protection covered <2% of ecoregions in national waters with high levels of abatable threat in 2013, which is ∼59% less protection in high-threat areas than if MPAs had been placed randomly. Relatively low-threat ecoregions had 6.3 times more strict protection (International Union for Conservation of Nature categories I–II) than high-threat ecoregions. Thirty-one ecoregions had high levels of stoppable threat but very low protection, which presents opportunities for MPAs to yield more significant near-term conservation benefits. The extent of the global MPA estate has increased, but the establishment of MPAs where they can reduce threats that are driving biodiversity loss is now urgently needed.  相似文献   

3.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   

4.
Assessments of the conservation and fisheries effects of marine reserves typically focus on single reserves where sampling occurs over narrow spatiotemporal scales. A strategy for broadening the collection and interpretation of data is collaborative fisheries research (CFR). Here we report results of a CFR program formed in part to test whether reserves at the Santa Barbara Channel Islands, USA, influenced lobster size and trap yield, and whether abundance changes in reserves led to spillover that influenced trap yield and effort distribution near reserve borders. Industry training of scientists allowed us to sample reserves with fishery relevant metrics that we compared with pre-reserve fishing records, a concurrent port sampling program, fishery effort patterns, the local ecological knowledge (LEK) of fishermen, and fishery-independent visual surveys of lobster abundance. After six years of reserve protection, there was a four- to eightfold increase in trap yield, a 5-10% increase in the mean size (carapace length) of legal sized lobsters, and larger size structure of lobsters trapped inside vs. outside of three replicate reserves. Patterns in trap data were corroborated by visual scuba surveys that indicated a four- to sixfold increase in lobster density inside reserves. Population increases within reserves did not lead to increased trap yields or effort concentrations (fishing the line) immediately outside reserve borders. The absence of these catch and effort trends, which are indicative of spillover, may be due to moderate total mortality (Z = 0.59 for legal sized lobsters outside reserves), which was estimated from analysis of growth and length frequency data collected as part of our CFR program. Spillover at the Channel Islands reserves may be occurring but at levels that are insufficient to influence the fishery dynamics that we measured. Future increases in fishing effort (outside reserves) and lobster biomass (inside reserves) are likely and may lead to increased spillover, and CFR provides an ideal platform for continued assessment of fishery-reserve interactions.  相似文献   

5.
Abstract: Quantifying the extent to which existing reserves meet conservation objectives and identifying gaps in coverage are vital to developing systematic protected‐area networks. Despite widespread recognition of the Philippines as a global priority for marine conservation, limited work has been undertaken to evaluate the conservation effectiveness of existing marine protected areas (MPAs). Targets for MPA coverage in the Philippines have been specified in the 1998 Fisheries Code legislation, which calls for 15% of coastal municipal waters (within 15 km of the coastline) to be protected within no‐take MPAs, and the Philippine Marine Sanctuary Strategy (2004), which aims to protect 10% of coral reef area in no‐take MPAs by 2020. We used a newly compiled database of nearly 1000 MPAs to measure progress toward these targets. We evaluated conservation effectiveness of MPAs in two ways. First, we determined the degree to which marine bioregions and conservation priority areas are represented within existing MPAs. Second, we assessed the size and spacing patterns of reserves in terms of best‐practice recommendations. We found that the current extent and distribution of MPAs does not adequately represent biodiversity. At present just 0.5% of municipal waters and 2.7–3.4% of coral reef area in the Philippines are protected in no‐take MPAs. Moreover, 85% of no‐take area is in just two sites; 90% of MPAs are <1 km2. Nevertheless, distances between existing MPAs should ensure larval connectivity between them, providing opportunities to develop regional‐scale MPA networks. Despite the considerable success of community‐based approaches to MPA implementation in the Philippines, this strategy will not be sufficient to meet conservation targets, even under a best‐case scenario for future MPA establishment. We recommend that implementation of community‐based MPAs be supplemented by designation of additional large no‐take areas specifically located to address conservation targets.  相似文献   

6.
Marine protected areas (MPAs) are key tools in addressing the global decline of sharks and rays, and marine parks and shark sanctuaries of various configurations have been established to conserve shark populations. However, assessments of their efficacy are compromised by inconsistent terminology, lack of standardized approaches to assess how MPAs contribute to shark and ray conservation, and ambiguity about how to integrate movement data in assessment processes. We devised a conceptual framework to standardize key terms (e.g., protection, contribution, potential impact, risk, threat) and used the concept of portfolio risk to identify key attributes of sharks and rays (assets), the threats they face (portfolio risk), and the specific role of MPAs in risk mitigation (insurance). Movement data can be integrated into the process by informing risk exposure and mitigation through MPAs. The framework is operationalized by posing 8 key questions that prompt practitioners to consider the assessment scope, MPA type and purpose, range of existing and potential threats, species biology and ecology, and management and operational contexts. Ultimately, MPA contributions to shark and ray conservation differ according to a complex set of human and natural factors and interactions that should be carefully considered in MPA design, implementation, and evaluation.  相似文献   

7.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   

8.
Marine protected areas (MPAs) are a primary tool for the stewardship, conservation, and restoration of marine ecosystems, yet 69% of global MPAs are only partially protected (i.e., are open to some form of fishing). Although fully protected areas have well-documented outcomes, including increased fish diversity and biomass, the effectiveness of partially protected areas is contested. Partially protected areas may provide benefits in some contexts and may be warranted for social reasons, yet social outcomes often depend on MPAs achieving their ecological goals to distinguish them from open areas and justify the cost of protection. We assessed the social perceptions and ecological effectiveness of 18 partially protected areas and 19 fully protected areas compared with 19 open areas along 7000 km of coast of southern Australia. We used mixed methods, gathering data via semistructured interviews, site surveys, and Reef Life (underwater visual census) surveys. We analyzed qualitative data in accordance with grounded theory and quantitative data with multivariate and univariate linear mixed-effects models. We found no social or ecological benefits for partially protected areas relative to open areas in our study. Partially protected areas had no more fish, invertebrates, or algae than open areas; were poorly understood by coastal users; were not more attractive than open areas; and were not perceived to have better marine life than open areas. These findings provide an important counterpoint to some large-scale meta-analyses that conclude partially protected areas can be ecologically effective but that draw this conclusion based on narrower measures. We argue that partially protected areas act as red herrings in marine conservation because they create an illusion of protection and consume scarce conservation resources yet provide little or no social or ecological gain over open areas. Fully protected areas, by contrast, have more fish species and biomass and are well understood, supported, and valued by the public. They are perceived to have better marine life and be improving over time in keeping with actual ecological results. Conservation outcomes can be improved by upgrading partially protected areas to higher levels of protection including conversion to fully protected areas.  相似文献   

9.
Mapping and predicting the potential risk of fishing activities to large marine protected areas (MPAs), where management capacity is low but fish biomass may be globally important, is vital to prioritizing enforcement and maximizing conservation benefits. Drifting fish aggregating devices (dFADs) are a highly effective fishing method employed in purse seine fisheries that attract and accumulate biomass fish, making fish easier to catch. However, dFADs are associated with several negative impacts, including high bycatch rates and lost or abandoned dFADs becoming beached on sensitive coastal areas (e.g., coral reefs). Using Lagrangian particle modeling, we determined the potential transit of dFADs in a large MPA around the Chagos Archipelago in the central Indian Ocean. We then quantified the risk of dFADs beaching on the archipelago's reefs and atolls and determined the potential for dFADs to pass through the MPA, accumulate biomass while within, and export it into areas where it can be legally fished (i.e., transit). Over one-third (37.51%) of dFADs posed a risk of either beaching or transiting the MPA for >14 days, 17.70% posed a risk of beaching or transiting the MPA for >30 days, and 13.11% posed a risk of beaching or transiting the MPA for >40 days. Modeled dFADs deployed on the east and west of the perimeter were more likely to beach and have long transiting times (i.e., posed the highest risk). The Great Chagos Bank, the largest atoll in the archipelago, was the most likely site to be affected by dFADs beaching. Overall, understanding the interactions between static MPAs and drifting fishing gears is vital to developing suitable management plans to support enforcement of MPA boundaries and the functioning and sustainability of their associated biomass.  相似文献   

10.
Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.  相似文献   

11.
Although protected areas represent a pivotal response to escalating anthropogenic threats, they face many pressures, inside and outside their boundaries. Amid these challenges, effective conservation is guided by evidence-based decision making supported by dynamic processes of learning and knowledge exchange. Although different models promote knowledge exchange, embedding research scientists within conservation agencies is best suited to supporting evidence-based conservation. Based on available literature and our experiences on several continents, we considered the benefits, challenges, and opportunities associated with embedding research scientists within conservation agencies and the research required to better understand the effectiveness of the embedding model for evidence-based conservation. Embedded researchers provide long-term commitment to building social capital among academic and nonacademic stakeholders; act as skilled gatekeepers who increase 2-way flow of knowledge between scientists and managers; attract, coordinate, and support management-relevant external research projects; drive the design and maintenance of long-term monitoring; and align their research with information needs. Notwithstanding the many benefits, research capacity of conservation agencies is declining worldwide. A significant challenge is that the values, structures, functions, and effectiveness of the embedding model of knowledge exchange remain poorly evaluated and documented. Also, embedded researchers have to balance their desire for creativity and flexibility with the standardization and quality control required by their public sector agencies; may be perceived as not credible because they are not truly independent of their agency; and have to couple scientific productivity with skills for transdisciplinary research, social facilitation, and stakeholder engagement. Systematic research on embedding and other models of knowledge exchange, across different world contexts, is required to better understand the benefits, costs, and institutional arrangements associated with different models.  相似文献   

12.
Although many papers report the effects of no-take marine protected areas (MPAs or reserves), scientifically rigorous empirical studies are rare, particularly for temperate reef fishes. We evaluated the responses of fish populations to protection from fishing in reserves by comparing densities and sizes inside and outside of five no-take reserves in southern California, USA. Our results are robust because we compared responses across multiple rocky-reef reserves in two different years and controlled for possible site differences by (a) ensuring that habitat characteristics were the same inside and outside reserves, and (b) sampling species that are not targeted, which would not be expected to have a direct response to fishing. We compared fish density and size and calculated biomass and egg production across all five sites. Fishes targeted by recreational and/or commercial fisheries consistently exhibited increases in mean density (150%), size (30%), biomass (440%), and egg production (730%) inside reserves. Reserve effects were greatest for legal-sized targeted fishes: significantly greater densities were found exclusively inside reserves for targeted species (580%), the largest size classes existed only inside reserves, and mean biomass was 1000% higher. These responses were unlikely to have been caused by habitat differences because there were no significant differences in habitat characteristics between reserve and control locations. Densities of non-targeted species did not differ between reserve and non-reserve locations, further supporting the conclusions that differences in targeted species between reserve and control locations were due to harvesting rather than site-specific effects. Although MPAs cannot replace traditional fisheries management, the concentration of increased biomass and egg production is a unique MPA benefit that serves both reserves and fisheries. Scientifically rigorous studies that include multiple reserves, such as this study, are needed to inform management and policy decisions.  相似文献   

13.
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio‐economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill‐over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade‐offs that result from the interaction of size, number, and distribution of MPAs in a network.  相似文献   

14.
Marine-protected areas (MPAs) are vital to marine conservation, but their coverage and distribution is insufficient to address declines in global biodiversity and fisheries. In response, many countries have committed through the Aichi Target 11 of the Convention on Biological Diversity to conserve 10% of the marine environment through ecologically representative and equitably managed MPAs by 2020. The rush to fulfill this commitment has raised concerns on how increasing MPA coverage will affect other elements of Target 11, including representation and equity. We examined a Philippines case study to assess and compare 3 MPA planning approaches for biodiversity representation and equitable distribution of costs to small-scale fishers. In the opportunistic approach, MPAs were identified and supported by coastal communities. The donor-assisted approach used local knowledge to select MPAs through a national-scale and donor-assisted conservation project. The systematic conservation planning approach identified MPA locations with the spatial prioritization software Marxan with Zones to achieve biodiversity objectives with minimal costs to fishers. We collected spatial data on biodiversity and fisheries features and performed a gap analysis to evaluate MPAs derived from different approaches. We assessed representation based on the proportion of biodiversity features conserved in MPAs and distribution equity by the distribution of opportunity costs (fishing areas lost in MPAs) among fisher stakeholder groups. The opportunistic approach did not ineffectively represent biodiversity and resulted in inequitable costs to fishers. The donor-assisted approach affected fishers disproportionately but provided near-optimal regional representation. Only the systematic approach achieved all representation targets with minimal and equitable costs to fishers. Our results demonstrate the utility of systematic conservation planning to address key elements of Target 11 and highlight opportunities (e.g., integration of local and scientific knowledge can address representation and equity concerns) and pitfalls (e.g., insufficient stakeholder considerations can exacerbate social inequalities) for planning MPAs in similar contexts.  相似文献   

15.
Abstract: Marine protected areas (MPAs), including no‐take marine reserves (MRs), play an important role in the conservation of marine biodiversity. We document the status of MPAs and MRs in Latin America and the Caribbean, where little has been reported on the scope of such protection. Our survey of protected area databases, published and unpublished literature, and Internet searches yielded information from 30 countries and 12 overseas territories. At present more than 700 MPAs have been established, covering more than 300,000 km2 or 1.5% of the coastal and shelf waters. We report on the status of 3 categories of protection: MPAs (limited take throughout the area), MRs (no‐take throughout the area), and mixed‐use (a limited‐take MPA that contains an MR). The majority of protected areas in Latin America and the Caribbean are MPAs, which allow some or extensive extractive activities throughout the designated area. These 571 sites cover 51,505 km2 or 0.3% of coastal and shelf waters. There are 98 MRs covering 16,862 km2 or 0.1% of the coastal and shelf waters. Mixed‐use MPAs are the fewest in number (87), but cover the largest area (236,853 km2, 1.2%). Across Latin America and the Caribbean, many biogeographic provinces are underrepresented in these protected areas. Large coastal regions remain unprotected, in particular, the southern Pacific and southern Atlantic coasts of South America. Our analysis reveals multiple opportunities to strengthen marine conservation in Latin America and the Caribbean by improving implementation, management, and enforcement of existing MPAs; adding new MPAs and MRs strategically to enhance connectivity and sustainability of existing protection; and establishing new networks of MPAs and MRs or combinations thereof to enhance protection where little currently exists.  相似文献   

16.
Goals play important roles in people's lives because they focus attention, mobilize effort, and sustain motivation. Understanding conservationists’ satisfaction with goal progress may provide insights into real-world environmental trends and flag risks to their well-being and motivation. We asked 2694 conservationists working globally how satisfied they were with progress toward goals important to them. We then explored how this satisfaction varied among groups, including demographic and occupational. Finally, we looked at respondents' experiences associated with goal-progress satisfaction. Many (94.0%) indicated that making a meaningful contribution to conservation was an important goal for them, and over half were satisfied or very satisfied in this area (52.5%). However, respondents were generally dissatisfied with progress on collective conservation goals (e.g., stopping species loss). Some groups were more likely to report dissatisfaction than others. For instance, those in conservation for longer tended to be less satisfied with collective goal progress (log odds –0.21, 95% credibility interval [CI] –0.32 to –0.10), but practitioners reported greater satisfaction (log odds 0.38, 95% CI 0.15–0.60). Likewise, those who were more optimistic in life (log odds 0.24, 95% CI 0.17–0.32), male (log odds 0.25, 95% CI 0.10–0.41), and working in conservation practice (log odds 0.25, 95% CI 0.08–0.43) reported greater satisfaction with individual goal progress. Free-text responses suggested widespread dissatisfaction with livelihood goals, particularly related to job security and adequate compensation. Although contributing to conservation appeared to be a source of satisfaction, slow goal progress in other areas––particularly around making a living––looked to be a source of distress and demotivation. Employers, funders, professional societies, and others should consider ways to help those in the sector make a difference while making a satisfactory living by, for example, prioritizing conservationists′ well-being when allocating funding. This support could include avoiding exploitative practices, fostering supportive work environments, and celebrating positive outcomes.  相似文献   

17.
Elie Gaget  Diego Pavón-Jordán  Alison Johnston  Aleksi Lehikoinen  Wesley M. Hochachka  Brett K. Sandercock  Alaaeldin Soultan  Hichem Azafzaf  Nadjiba Bendjedda  Taulant Bino  Luka Božič  Preben Clausen  Mohamed Dakki  Koen Devos  Cristi Domsa  Vitor Encarnação  Kiraz Erciyas-Yavuz  Sándor Faragó  Teresa Frost  Clemence Gaudard  Lívia Gosztonyi  Fredrik Haas  Menno Hornman  Tom Langendoen  Christina Ieronymidou  Vasiliy A. Kostyushin  Lesley J. Lewis  Svein-Håkon Lorentsen  Leho Luigujõe  Włodzimierz Meissner  Tibor Mikuska  Blas Molina  Zuzana Musilová  Viktor Natykanets  Jean-Yves Paquet  Nicky Petkov  Danae Portolou  Jozef Ridzoň  Samir Sayoud  Marko Šćiban  Laimonas Sniauksta  Antra Stīpniece  Nicolas Strebel  Norbert Teufelbauer  Goran Topić  Danka Uzunova  Andrej Vizi  Johannes Wahl  Marco Zenatello  Jon E. Brommer 《Conservation biology》2021,35(3):834-845
Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993–2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.  相似文献   

18.
Abstract:  Fishing activities worldwide have dramatically affected marine fish stocks and ecosystems. Marine protected areas (MPAs) with no-take zones may enhance fisheries, but empirical evidence of this is scant. We conducted a 4-year survey of fish catches around and within an MPA that was previously fully closed to fishing and then partially reopened under regulated comanaged fishing. In collaboration with the fishers and the MPA authority, we set the fishing effort and selected the gear to limit fishing impact on key fish predators, juvenile fish stage, and benthic communities and habitats. Within an adaptive comanagement framework, fishers agreed to reduce fishing effort if symptoms of overfishing were detected. We analyzed the temporal trends of catch per unit of effort (CPUE) of the whole species assemblages and CPUE of the four most valuable and frequent species observed inside the opened buffer zone and outside the MPA investigated. After the comanaged opening, CPUE first declined and then stabilized at levels more than twice that of catches obtained outside the MPA. Our results suggest that working closely with fishers can result in greater fisheries catches. Partial protection of coastal areas together with adaptive comanagement involving fishers, scientists, and managers can effectively achieve conservation and fishery management goals and benefit fishing communities and alleviate overfishing.  相似文献   

19.
20.
Recovery of grassland birds in agricultural landscapes is a global imperative. Agricultural landscapes are complex, and the value of resource patches may vary substantially among species. The spatial extent at which landscape features affect populations (i.e., scale of effect) may also differ among species. There is a need for regional-scale conservation planning that considers landscape-scale and species-specific responses of grassland birds to environmental change. We developed a spatially explicit approach to optimizing grassland conservation in the context of species-specific landscapes and prioritization of species recovery and applied it to a conservation program in Kentucky (USA). We used a hierarchical distance-sampling model with an embedded scale of effect predictor to estimate the relationship between landscape structure and abundance of eastern meadowlarks (Sturnella magna), field sparrows (Spizella pusilla), and northern bobwhites (Colinus virginianus). We used a novel spatially explicit optimization procedure rooted in multi-attribute utility theory to design alternative conservation strategies (e.g., prioritize only northern bobwhite recovery or assign equal weight to each species’ recovery). Eastern meadowlarks and field sparrows were more likely to respond to landscape-scale resource patch adjacencies than landscape-scale patch densities. Northern bobwhite responded to both landscape-scale resource patch adjacencies and densities and responded strongly to increased grassland density. Effects of landscape features on local abundance decreased as distance increased and had negligible influence at 0.8 km for eastern meadowlarks (0.7–1.2 km 95% Bayesian credibility intervals [BCI]), 2.5 km for field sparrows (1.5–5.8 km 95% BCI), and 8.4 km for bobwhite (6.4–26 km 95% BCI). Northern bobwhites were predicted to benefit greatly from future grassland conservation regardless of conservation priorities, but eastern meadowlark and field sparrow were not. Our results suggest similar species can respond differently to broad-scale conservation practices because of species-specific, distance-dependent relationships with landscape structure. Our framework is quantitative, conceptually simple, customizable, and predictive and can be used to optimize conservation in heterogeneous ecosystems while considering landscape-scale processes and explicit prioritization of species recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号