首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The giant panda attracts disproportionate conservation resources. How well does this emphasis protect other endemic species? Detailed data on geographical ranges are not available for plants or invertebrates, so we restrict our analyses to 3 vertebrate taxa: birds, mammals, and amphibians. There are gaps in their protection, and we recommend practical actions to fill them. We identified patterns of species richness, then identified which species are endemic to China, and then which, like the panda, live in forests. After refining each species' range by its known elevational range and remaining forest habitats as determined from remote sensing, we identified the top 5% richest areas as the centers of endemism. Southern mountains, especially the eastern Hengduan Mountains, were centers for all 3 taxa. Over 96% of the panda habitat overlapped the endemic centers. Thus, investing in almost any panda habitat will benefit many other endemics. Existing panda national nature reserves cover all but one of the endemic species that overlap with the panda's distribution. Of particular interest are 14 mammal, 20 bird, and 82 amphibian species that are inadequately protected. Most of these species the International Union for Conservation of Nature currently deems threatened. But 7 mammal, 3 bird, and 20 amphibian species are currently nonthreatened, yet their geographical ranges are <20,000 km2 after accounting for elevational restriction and remaining habitats. These species concentrate mainly in Sichuan, Yunnan, Nan Mountains, and Hainan. There is a high concentration in the east Daxiang and Xiaoxiang Mountains of Sichuan, where pandas are absent and where there are no national nature reserves. The others concentrate in Yunnan, Nan Mountains, and Hainan. Here, 10 prefectures might establish new protected areas or upgrade local nature reserves to national status.  相似文献   

2.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   

3.
Abstract: The majority of bird extinctions since 1800 have occurred on islands, and non‐native predators have been the greatest threat to the persistence of island birds. Island endemic species often lack life‐history traits and behaviors that reduce the probability of predation and they can become evolutionarily trapped if they are unable to adapt, but few studies have examined the ability of island species to respond to novel predators. The greatest threat to the persistence of the Oahu Elepaio (Chasiempis ibidis), an endangered Hawaiian forest bird, is nest predation by non‐native black rats (Rattus rattus). I examined whether Oahu Elepaio nest placement has changed at the individual and population levels in response to rat predation by measuring nest height and determining whether each nest produced offspring from 1996 to 2011. Average height of Oahu Elepaio nests increased 50% over this 16‐year period, from 7.9 m (SE 1.7) to 12.0 m (SE 1.1). There was no net change in height of sequential nests made by individual birds, which means individual elepaios have not learned to place nests higher. Nests ≤3 m off the ground produced offspring less often, and the proportion of such nests declined over time, which suggests that nest‐building behavior has evolved through natural selection by predation. Nest success increased over time, which may increase the probability of long‐term persistence of the species. Rat control may facilitate the evolution of nesting height by slowing the rate of population decline and providing time for this adaptive response to spread through the population.  相似文献   

4.
Predation on native fauna by non‐native invasive mammals is widely documented, but effects of predation at the population level are rarely measured. Eradication of invasive mammals from islands has led to recovery of native biota, but the benefits of controlling invasive mammal populations in settings where eradication is not feasible are less understood. We used various combinations of aerially delivered toxic bait and control measures on the ground to reduce abundances of invasive rats (Rattus rattus) to low levels over large areas on mainland New Zealand and then monitored the abundance of invertebrates on replicated treatment sites to compare with abundances on similar nontreatment sites. We also assessed rat diet by examining stomach contents. Abundance of the rats’ most‐consumed invertebrate prey item, the large‐bodied Auckland tree weta (Hemideina thoracica), increased 3‐fold on treatment sites where we maintained rats at <4/ha for approximately 3 years, compared with the nontreatment sites. Auckland tree weta also increased in abundance on sites where rats were controlled with a single aerial‐poisoning operation, but rat abundance subsequently increased on these sites and tree weta abundance then declined. Nevertheless, our data suggest that biennial reduction of rat abundances may be sufficient to allow increases in tree weta populations. Other invertebrates that were consumed less often (cave weta [Rhaphidophoridae], spiders [Araneae], and cockroaches [Blattodea]) showed no systematic changes in abundance following rat control. Our results suggest that the significant threat to recruitment and individual survival that predation by rats poses for tree weta can be mitigated by wide‐scale aerial pest control. Efectos del Control Extensivo Espacial de Ratas Invasoras sobre la Abundancia de Invertebrados Nativos en Bosques de Nueva Zelanda  相似文献   

5.
Monitoring is critical to assess management effectiveness, but broadscale systematic assessments of monitoring to evaluate and improve recovery efforts are lacking. We compiled 1808 time series from 71 threatened and near-threatened terrestrial and volant mammal species and subspecies in Australia (48% of all threatened mammal taxa) to compare relative trends of populations subject to different management strategies. We adapted the Living Planet Index to develop the Threatened Species Index for Australian Mammals and track aggregate trends for all sampled threatened mammal populations and for small (<35 g), medium (35–5500 g), and large mammals (>5500 g) from 2000 to 2017. Unmanaged populations (42 taxa) declined by 63% on average; unmanaged small mammals exhibited the greatest declines (96%). Populations of 17 taxa in havens (islands and fenced areas that excluded or eliminated introduced red foxes [Vulpes vulpes] and domestic cats [Felis catus]) increased by 680%. Outside havens, populations undergoing sustained predator baiting initially declined by 75% but subsequently increased to 47% of their abundance in 2000. At sites where predators were not excluded or baited but other actions (e.g., fire management, introduced herbivore control) occurred, populations of small and medium mammals declined faster, but large mammals declined more slowly, than unmanaged populations. Only 13% of taxa had data for both unmanaged and managed populations; index comparisons for this subset showed that taxa with populations increasing inside havens declined outside havens but taxa with populations subject to predator baiting outside havens declined more slowly than populations with no management and then increased, whereas unmanaged populations continued to decline. More comprehensive and improved monitoring (particularly encompassing poorly represented management actions and taxonomic groups like bats and small mammals) is required to understand whether and where management has worked. Improved implementation of management for threats other than predation is critical to recover Australia's threatened mammals.  相似文献   

6.
A prevailing view in dryland systems is that mammals are constrained by the scarcity of fertile soils and primary productivity. An alternative view is that predation is a primary driver of mammal assemblages, especially in Australia, where 2 introduced mesopredators—feral cat (Felis catus) and red fox (Vulpes vulpes)—are responsible for severe declines of dryland mammals. We evaluated productivity and predation as drivers of native mammal assemblage structure in dryland Australia. We used new data from 90 sites to examine the divers of extant mammal species richness and reconstructed historic mammal assemblages to determine proportional loss of mammal species across broad habitat types (landform and vegetation communities). Predation was supported as a major driver of extant mammal richness, but its effect was strongly mediated by habitat. Areas that were rugged or had dense grass cover supported more mammal species than the more productive and topographically simple areas. Twelve species in the critical weight range (CWR) (35–5500 g) that is most vulnerable to mesopredator predation were extirpated from the continent's central region, and the severity of loss of species correlated negatively with ruggedness and positively with productivity. Based on previous studies, we expect that habitat mediates predation from red foxes and feral cats because it affects these species’ densities and foraging efficiency. Large areas of rugged terrain provided vital refuge for Australian dryland mammals, and we predict such areas will support the persistence of CWR species in the face of ongoing mammal declines elsewhere in Australia.  相似文献   

7.
To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.  相似文献   

8.
Abstract:  Within the last 30 years, five endemic bird species of the Alaka'i Swamp, Kaua'i, Hawai'i, have likely gone extinct. We documented population trends of the remaining avifauna in this time period to identify a common pattern in the Hawaiian Islands: decline of native species and expansion of introduced species. We conducted bird surveys over 100 km2 of the Alaka'i and Kōke'e regions of Kaua'i in March–April 2000 to estimate population size, distribution, and range limits of seven native and six introduced forest birds. We compared the results with four previous surveys conducted over the last 30 years. Five of the seven native species we studied have fared well, maintaining sizeable populations (>20,000 individuals) and unchanged or increasing numbers. The endemic 'Akikiki ( Oreomystis bairdi ), however, declined from 6296 (SE ± 1374) to 1472 (SE ± 680) individuals and exhibited range contraction from 88 to 36 km2. The 'I'iwi ( Vestiaria coccinea ) also experienced a decline and contraction, though not as severe. Populations of several introduced forest birds are increasing, but all species, excluding the Japanese White-eye ( Zosterops japonicus ), were at low numbers (<5,500 individuals in survey area). One introduced species, the Japanese Bush-Warbler ( Cettia diphone ) recently invaded, whereas another, the Red-billed Leiothrix ( Leiothrix lutea ), has been extirpated. Two hurricanes in the past 20 years appear to have most strongly affected nectarivores and may have contributed to the decline or extinction of several other species. Overall, native bird populations on Kaua'i have exhibited species-specific responses to limiting factors. Although most native populations appear stable, the extant native avifauna is vulnerable as a result of limited distributions and the potential for widespread habitat degradation.  相似文献   

9.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

10.
Abstract: Biological invaders can reconfigure ecological networks in communities, which changes community structure, composition, and ecosystem function. We investigated whether impacts caused by the introduced yellow crazy ant (Anoplolepis gracilipes), a pantropical invader rapidly expanding its range, extend to higher‐order consumers by comparing counts, behaviors, and nesting success of endemic forest birds in ant‐invaded and uninvaded rainforest on Christmas Island (Indian Ocean). Point counts and direct behavioral observations showed that ant invasion altered abundances and behaviors of the bird species we examined: the Island Thrush (Turdus poliocephalus erythropleurus), Emerald Dove (Chalcophaps indica natalis), and Christmas Island White‐eye (Zosterops natalis). The thrush, which frequents the forest floor, altered its foraging and reproductive behaviors in ant‐invaded forest, where nest‐site location changed, and nest success and juvenile counts were lower. Counts of the dove, which forages exclusively on the forest floor, were 9–14 times lower in ant‐invaded forest. In contrast, counts and foraging success of the white‐eye, a generalist feeder in the understory and canopy, were higher in ant‐invaded forest, where mutualism between the ant and honeydew‐secreting scale insects increased the abundance of scale‐insect prey. These complex outcomes involved the interplay of direct interference by ants and altered resource availability and habitat structure caused indirectly by ant invasion. Ecological meltdown, rapidly unleashed by ant invasion, extended to these endemic forest birds and may affect key ecosystem processes, including seed dispersal.  相似文献   

11.
Island populations are vulnerable to introduced pathogens, as evidenced by extinction or population decline of several endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum (order Haemosporida). We analyzed blood samples from 363 birds caught near Guantánamo Bay, Cuba, for the presence of haemosporidian infections. We characterized parasite lineages by determining nucleotide variation of the parasite's mitochondrial cyt b gene. Fifty‐nine individuals were infected, and we identified 7 lineages of haemosporidian parasites. Fifty individuals were infected by 6 Haemoproteus sp. lineages, including a newly characterized lineage of Haem. (Parahaemoproteus) sp. CUH01. Nine individuals carried the P. relictum lineage GRW4, including 5 endemic Cuban Grassquits (Tiaris canorus) and 1 migratory Cape May Warbler (Setophaga tigrina). A sequence of the merozoite surface protein gene from one Cuban Grassquit infected with GRW4 matched that of the Hawaiian haplotype Pr9. Our results indicate that resident and migratory Cuban birds are infected with a malaria lineage that has severely affected populations of several endemic Hawaiian birds. We suggest GRW4 may be associated with the lack of several bird species on Cuba that are ubiquitous elsewhere in the West Indies. From the standpoint of avian conservation in the Caribbean Basin, it will be important to determine the distribution of haemosporidian parasites, especially P. relictum GRW4, in Cuba as well as the pathogenicity of this lineage in species that occur and are absent from Cuba.  相似文献   

12.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

13.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   

14.
Agroforests can play an important role in biodiversity conservation in complex landscapes. A key factor distinguishing among agroforests is land-use history – whether agroforests are established inside forests or on historically forested but currently open lands. The disparity between land-use histories means the appropriate biodiversity baselines may differ, which should be accounted for when assessing the conservation value of agroforests. Specifically, comparisons between multiple baselines in forest and open land could enrich understanding of species’ responses by contextualizing them. We made such comparisons based on data from a recently published meta-analysis of the effects of cocoa (Theobroma cacao) agroforestry on bird diversity. We regrouped rustic, mixed shade cocoa, and low shade cocoa agroforests, based on land-use history, into forest-derived and open-land-derived agroforests and compared bird species diversity (species richness, abundance, and Shannon's index values) between forest and open land, which represented the 2 alternative baselines. Bird diversity was similar in forest-derived agroforests and forests (Hedges’ g* estimate [SE] = -0.3144 [0.3416], p = 0.36). Open-land-derived agroforests were significantly less diverse than forests (g* = 1.4312 [0.6308], p = 0.023) and comparable to open lands (g* = -0.1529 [0.5035], p = 0.76). Our results highlight how land-use history determined the conservation value of cocoa agroforests. Forest-derived cocoa agroforests were comparable to the available – usually already degraded – forest baselines, but entail future degradation risks. In contrast, open-land-derived cocoa agroforestry may offer restoration opportunities. Our results showed that comparisons among multiple baselines may inform relative contributions of agroforestry systems to bird conservation on a landscape scale.  相似文献   

15.
Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species—echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)—and 2 non-native, invasive mammal species—fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98 = 5.91, p < 0.001) and composition (F3, 43 = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.  相似文献   

16.
In species‐rich tropical forests, effective biodiversity management demands measures of progress, yet budgetary limitations typically constrain capacity of decision makers to assess response of biological communities to habitat change. One approach is to identify ecological‐disturbance indicator species (EDIS) whose monitoring is also monetarily cost‐effective. These species can be identified by determining individual species’ responses to disturbance across a gradient; however, such responses may be confounded by factors other than disturbance. For example, in mountain environments the effects of anthropogenic habitat alteration are commonly confounded by elevation. EDIS have been identified with the indicator value (IndVal) metric, but there are weaknesses in the application of this approach in complex montane systems. We surveyed birds, small mammals, bats, and leaf‐litter lizards in differentially disturbed cloud forest of the Ecuadorian Andes. We then incorporated elevation in generalized linear (mixed) models (GL(M)M) to screen for EDIS in the data set. Finally, we used rarefaction of species accumulation data to compare relative monetary costs of identifying and monitoring EDIS at equal sampling effort, based on species richness. Our GL(M)M generated greater numbers of EDIS but fewer characteristic species relative to IndVal. In absolute terms birds were the most cost‐effective of the 4 taxa surveyed. We found one low‐cost bird EDIS. In terms of the number of indicators generated as a proportion of species richness, EDIS of small mammals were the most cost‐effective. Our approach has the potential to be a useful tool for facilitating more sustainable management of Andean forest systems. Rentabilidad del Uso de Pequeños Vertebrados como Indicadores de Perturbaciones  相似文献   

17.
Abstract: Some conservationists argue for a focused effort to protect the most critically endangered species, and others suggest a large‐scale endeavor to safeguard common species across large areas. Similar arguments are applicable to the distribution of scientific effort among species. Should conservation scientists focus research efforts on threatened species, common species, or do all species deserve equal attention? We assessed the scientific equity among 1909 mammals, birds, reptiles, and amphibians of southern Africa by relating the number of papers written about each species to their status on the International Union for Conservation of Nature Red List. Threatened large mammals and reptiles had more papers written about them than their nonthreatened counterparts, whereas threatened small mammals and amphibians received less attention than nonthreatened species. Threatened birds received an intermediate amount of attention in the scientific literature. Thus, threat status appears to drive scientific effort among some animal groups, whereas other factors (e.g., pest management and commercial interest) appear to dictate scientific investment in particular species of other groups. Furthermore, the scientific investment per species differed greatly between groups—the mean number of papers per threatened large mammal eclipsed that of threatened reptiles, birds, small mammals, and amphibians by 2.6‐, 15‐, 216‐, and more than 500‐fold, respectively. Thus, in the eyes of science, all species are not created equal. A few species commanded a great proportion of scientific attention, whereas for many species information that might inform conservation is virtually nonexistent.  相似文献   

18.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

19.
Abstract: Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni‐corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic‐species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation.  相似文献   

20.
Biodiversity declines and ecosystem decay follow forest fragmentation; initially, abundant species may become rare or be extirpated. Underlying mechanisms behind delayed extirpation of certain species following forest fragmentation are unknown. Species declines may be attributed to an inadequate number of breeding adults required to replace the population or decreased juvenile survival rate due to reduced recruitment or increased nest predation pressures. We used 10 years of avian banding data, 5 years before and 4 years after fragment isolation, from the Biological Dynamics of Forest Fragments Project, carried out near Manaus, Brazil, to investigate the breeding activity hypothesis that there is less breeding activity and fewer young after relative to before fragment isolation. We compared the capture rates of active breeding and young birds in 3 forest types (primary forest, fragment before isolation, and fragment after isolation) and the proportion of active breeding and young birds with all birds in each unique fragment type before and after isolation. We grouped all bird species by diet (insectivore or frugivore) and nesting strategy (open cup, cavity, or enclosed) to allow further comparisons among forest types. We found support for the breeding activity hypothesis in insectivorous and frugivorous birds (effect sizes 0.45 and 0.53, respectively) and in birds with open-cup and enclosed nesting strategies (effect sizes 0.56 and 0.44, respectively) such that on average there were more breeding birds in fragments before isolation relative to after isolation. A larger proportion of birds in the community were actively breeding before fragment isolation (72%) than after fragment isolation (11%). Unexpectedly, there was no significant decrease in the number of young birds after fragment isolation, although sample sizes for young were small (n = 43). This may have been due to sustained immigration of young birds to fragments after isolation. Together, our results provide some of the strongest evidence to date that avian breeding activity decreases in response to fragment isolation, which could be a fundamental mechanism contributing to ecosystem decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号