首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Assessing Biodiversity   总被引:1,自引:0,他引:1  
Environmental assessment and monitoring is not limited to measuringquantities of some substances that threaten our existence. Atpresent the greatest challenge is not to gain another decimal pointin assaying a certain noxious chemical. As far as technical aspectsof monitoring are concerned, we witness a steady progress. Ourconceptual development is less tangible. At the same time it ismore urgent. We are directed to assess and monitor novelcharacteristics such as biodiversity and ecosystem health. They areconsidered to be the basis of modern, ecosystem management.Specialists in wildlife, fisheries, soil scientists, agronomists,and foresters are revising the established tenets of theirdisciplines to pursue maximum biodiversity. This could be done onlyif we know what biodiversity and ecosystem health are. This paperassesses the state of our knowledge of these concepts.  相似文献   

2.
A Systems Approach to Biodiversity Conservation Planning   总被引:1,自引:0,他引:1  
With a recent media-fueled transition from a scientific to a political perspective, biodiversity has become an issue of ethics and ensuing values, beyond its traditional ecological roots. More fundamentally, the traditional perspective of biodiversity is being challenged by the emergence of a post-normal or systems-based approach to science. A systems-based perspective of living systems rests on the central tenets of complexity and uncertainty, and necessitates flexibility, anticipation and adaptation rather than prediction and control in conservation planning and management. What are the implications of this new perspective? This paper examines these challenges in the context of biodiversity conservation planning. The new perspectives of biodiversity are identified and explored, and the emergence of a new ecological context for biodiversity conservation is discussed. From the analysis, the challenges and implications for conservation planning are considered, and a systems-based or post-normal approach to conservation planning and management is proposed. In light of the new perspectives for biodiversity, conservation planning and management approaches should ultimately reflect the essence of living systems: they should be diverse, adaptive, and self-organizing, accepting the ecological realities of change.  相似文献   

3.
Overall, the greatest threats to Canadian and global biodiversity are associated with conversions of natural ecosystems to anthropogenic ones, and over-exploitation of biological resources. This circumstance does not, however, trivialize the importance of atmospheric influences. Although scientific understanding of the risks is incomplete, it is nevertheless clear that anthropogenic changes in atmospheric stressors are potentially damaging to biodiversity and other ecological values over medium- and longer-term scales. It is important that greater investments be made in support of longer-term monitoring and research designed to understand the effects of atmospheric and other environmental stressors on the biodiversity and structure and function of Canadian ecosystems.  相似文献   

4.
山东省生物多样性试点评价   总被引:2,自引:1,他引:2  
以县级行政区域为评价单元,利用现有文献资料和补充调查数据,按照《区域生物多样性评价标准》(HJ 623—2011)规定的评价指标和方法,评价了山东省120个县级行政区域的生物多样性状况,分析了生物多样性状况空间分布规律。评价结果表明:山东省县级行政区域生物多样性指数在23.27~40.24之间变化,县级行政区域生物多样性状况分为"中"和"一般",分别占山东省土地总面积的55.8%和44.2%。鲁中南山地丘陵区和鲁东丘陵区的生物多样性状况好于黄河三角洲、鲁西北和鲁西南平原区。  相似文献   

5.
陈平  李曌  程洁 《中国环境监测》2013,29(6):184-191
为保护地球生物资源,1992年巴西里约热内卢的联合国环境与发展大会签署《生物多样性公约》,1993年正式生效。公约第7条规定了缔约方有履行识别和监测需要保护的重要的生物多样性组成部分之义务。为此,全方位、多层次的生物多样性监测网络在世界各国家和地区得以建立和开展工作。日本作为《生物多样性公约》的缔约国之一,为履约并保护其国内因经济发展而受到严重威胁的自然环境和自然遗产,整合其20世纪70年代开展的“自然环境保护基础调查”和21世纪2003年开始构建的“重要地域生态系统监测网络”,逐步形成了国家尺度的生物多样性监测体系。根据日本生物多样性中心公布的信息与数据,介绍了日本国家尺度生物多样性监测的两项主要工作,即自然环境保护基础调查和重要地域生态系统监测网络;总结了日本国家生物多样性监测的发展历程和主要特点;提出了加强中国生物多样性监测工作的建议。  相似文献   

6.
The Little Missouri National Grasslands (LMNG) of western North Dakota support the largest permitted cattle grazing use within all lands administered by the USDA, Forest Service, as well as critical habitat for many wildlife species. This fact, coupled with the need to revise current planning direction for range allotments of the LMNG, necessitated that a broad-level characterization of ecosystem integrity and resource conditions be conducted across all lands within the study area (approximately 800,000 hectares) in a rapid and cost-effective manner. The approach taken in this study was based on ecological classifications, which effectively utilized existing field plot data collected for a variety of previous inventory objectives, and their continuous spatial projection across the LMNG by maps of both existing and potential vegetation. These two map themes represent current and reference conditions (existing vs. potential vegetation); their intersection allowed us to assign various ecological status ratings (i.e., ecosystem integrity and resource condition) based on the degree of departure between current and reference conditions. In this paper, we present a brief review of methodologies used in the development of ecological classifications, and also illustrate their application to assessments of rangeland health through selected maps of ecological status ratings for the LMNG.  相似文献   

7.
Strategies to conserve biodiversity need to include the monitoring, modelling, adaptation and regulation of the composition of the atmosphere. Atmospheric issues include climate variability and extremes; climate change; stratospheric ozone depletion; acid deposition; photochemical pollution; suspended particulate matter; and hazardous air pollutants. Coarse filter and fine filter approaches have been used to understand the complexity of the interactions between the atmosphere and biodiversity. In the first approach, climate-based models, using GIS technology, helped create future biodiversity scenarios under a 2 × CO2 atmosphere. In the second approach, the SI/MAB forest biodiversity monitoring protocols helped calibrate the climate-forest biodiversity baseline and, as global diagnostics, helped identify where the biodiversity was in equilibrium with the present climate. Forest climate monitoring, an enhancing protocol, was used in a co-location approach to define the thermal buffering capacity of forest ecosystems and their ability to reduce and ameliorate global climate variability, extremes and change.  相似文献   

8.
Atmospheric Change and Biodiversity in the Arctic   总被引:2,自引:0,他引:2  
The Canadian Arctic is characterized by a high variation in landform types and there are complex interactions between land, water and the atmosphere which dramatically affect the distribution of biota. Biodiversity depends upon the intensity, predictability and scale of these interactions. Observations, as well as predictions of large-scale climate models which include ocean circulation, reveal an anomalous cooling of northeastern Canada in recent decades, in contrast to the overall significant increase in average annual temperature in the Northern Hemisphere. Predictions from models are necessary to forecast the change in the treeline in the 21st century which may lead to a major loss of tundra. The rate of change in vegetation in response to climate change is poorly understood. The treeline in central Canada, for example, is showing infilling with trees, and in some locations, northerly movement of the boundary. The presence of sea ice in Hudson Bay and other coastal areas is a major factor affecting interactions between the marine and terrestrial ecosystems. Loss of ice and therefore hunting of seals by polar bears will reduce bear and arctic fox populations within the region. In turn, this is likely to have significant effects on their herbivorous prey populations and forage plants. Further, the undersurface of sea ice is a major site for the growth of algae and marine invertebrates which in turn act as food for the marine food web. A rise in sea-level may flood coastal saltmarsh communities leading to changes in plant assemblages and a decline in foraging by geese and other consumers. The anomalous cooling in the eastern Arctic, primarily in late winter and early spring, has interrupted northern migration of breeding populations of geese and ducks and led to increased damage to vegetation in southern arctic saltmarshes as a result of foraging. It is likely that there has been a significant loss of invertebrates in those areas where the vegetation has been destroyed. Warming will have major effects on permafrost distribution and on ground-ice resulting in a major destabilization of slopes and slumping of soil, and disruption of tundra plant communities. Disruption of peat and moss surfaces lead to loss of insulation, an increase in active-layer depth and changes in drainage and plant assemblages. Increases of UV-B radiation will strongly affect vulnerable populations of both plants and animals. The indigenous peoples will face major changes in life style, edibility of food and health standards, if there is a significant warming trend. The great need is for information which is sensitive to the changes and will assist in developing an understanding of the complex interactions of the arctic biota, human populations and the physical environment.  相似文献   

9.
Holling proposed a four-phase conceptual model of ecosystem dynamics that includes exploitation, conservation, and destructive and renewal components to explain the failure of many natural resource management schemes. The model is drawn as a sideways figure-eight i.e. . There are two dimensions in this model, connectivity (abscissa) and the amount of capital stored in the system (ordinate). This conceptual model has been suggested as a guide to thinking about the impact of climate change on biodiversity, but the two dimensions are insufficient and the alignment of the figure-eight model is problematic when compared with actual data. Kay has adjusted the dimensions of the figure-eight model and renamed the abscissa as exergy stored and the ordinate as exergy consumed. We realign the original figure-eight model, labeling the abscissa as carbon stored and the ordinate as nutrients, such that the relative values of both axes are in qualitative agreement with data from four different studies. This new alignment is then shown to fit relatively well with Holling's original labels. This revision of the figure-eight model brings Holling's model into agreement with observations and provides insight into the linkages between biodiversity and climate change.  相似文献   

10.
2008年5月至2009年4月对升钟水库的浮游植物群落结构进行了研究.结果表明,升钟水库浮游植物共计8门69属219种(含变种和变型),种群结构主要以蓝藻、绿藻和硅藻为主.浮游植物的生物多样性指数平均为1.059,均匀度指数平均为0.192,平均藻类密度为33.41×10 5个/L,标志升钟水库的水体营养程度较高.  相似文献   

11.
Predicted atmospheric change, mainly climate change, will have profound effects on the biodiversity of Canadian forests. Predictions derived from forest models, responses of species and ecosystems related to modern ecological characteristics and paleoecological studies suggest large-scale, wide-ranging changes from the biome to physiological levels. Paleoecological analogues in B.C. and other parts of Canada reveal that major changes must be expected in forest composition, range, structure and ecological processes. In B.C., past warmer and drier climates supported a different forest pattern, including forest types with no modern analogue. This produced dramatically different disturbance regimes, specifically more fires, and affected tree growth rates. The relationship of forests with non-forest habitats, especially wetlands and grasslands was different suggesting implications for wildlife biodiversity. British Columbia's Forest Practices Code prescribes guidelines for biodiversity objectives but ignores the issue of atmospheric change. This omission may result from a lack of understanding of the profound potential effects of atmospheric change on forest biodiversity in the next harvest cycle and lack of mechanisms to assess impacts and develop management strategies for specific sites. An example of a simple paleoecological assessment method involving pollen ratios is proposed.  相似文献   

12.
滨州沿海湿地生物多样性保护探讨   总被引:1,自引:0,他引:1  
王真 《干旱环境监测》2006,20(4):215-218
重点研究了该区域海洋生物多样性、淡水生物多样性、陆生和海岛等高等植物多样性、陆栖动物多样性与特点。分析了其破坏现状及原因,提出了生物多样性保护对策和可持续利用途径。  相似文献   

13.
伊犁地区生物多样性保护及利用   总被引:1,自引:0,他引:1  
伊犁地区是新疆多种多样动植物的分布中心,堪称自然宝库、天生的博物园。由于人类活动的不断加剧、物种资源过度开发利用、森林的破坏与片段化、水域污染等原因,使生物多样性受到威胁。本文通过对伊犁地区生物多样性保护现状和存在问题的分析,提出相应的保护对策及建议。  相似文献   

14.
新疆卡拉麦里山有蹄类自然保护区生物多样性保护研究   总被引:2,自引:0,他引:2  
生物多样性具有多重价值,如生态价值、社会价值和经济价值。卡拉麦里山自然保护区生物多样性不但关系到当地经济发展和人民生存安全,而且关系到整个保护区、整个新疆的可持续发展。本文分析了卡拉麦里山有蹄类自然保护区生物多样性特点及生物多样性遭受严重破坏的原因,提出了保护该区生物多样性的对策措施:①加强卡拉麦里山有蹄类自然保护区生物多样性的调查研究工作。②加强保护区的建设。③加大立法与执法制度。④加强生物多样性保护的宣传教育。⑤加强生物多样性保护的公众参与。⑥加强当地居民的基本生产、生活条件建设。⑦在保护区推行生态旅游。  相似文献   

15.
Canada responded to the Global Biodiversity Convention by completing the Canadian Biodiversity Strategy in 1995. At the same time, Environment Canada also completed a national Science Assessment on Biodiversity. During this period, the Smithsonian Institution, in partnership with Parks and Environment Canada, initiated the implementation of a global biodiversity monitoring program in Canada. Under the auspices of the United Nations Man and the Biosphere Program, the SI/MAB monitoring protocols and plots have spread across Canada at an unprecedented rate. National champions in the science and educational sectors, working within an inter-disciplinary ecological framework, have guided the development, education, quality control and sharing of atmosphere-biodiversity observations electronically.Atmospheric-Biodiversity Networks and Networking have traditionally operated within separate mandates with little degree of integration. Air-Bio Networks were designed within an integrated framework to better understand the atmospheric stress on biodiversity and the adaptation actions, nationally and regionally. Detailed examples of the cumulative effects of climate change, stratospheric ozone depletion, acid deposition, ground-level ozone, suspended particulate matter and hazardous air pollutants on biodiversity will be discussed using a Southern Ontario case study. In addition, recommendations will be presented for future paired SI/MAB plots, linked networks and networking for adaptation within the context of climate, chemical and ecological gradients.  相似文献   

16.
The social and economic implications of atmospheric change on biodiversity need to be seen in a global context of major shifts in the conceptualization and management of our relationship with nature. Traditionally, we have conceptualized the atmosphere and the other creatures of the biosphere as separate from the human, but their quasi-autonomy is now becoming subject to more and more human management. This raises not only economic issues, but social, political, and ethical concerns that will have substantial influence on public policy. Among these are the commodification of genetic material; the privatization of traditional knowledge; and the management of information. In this broader context, the paper examines an array of current and proposed strategies of response to changes in biodiversity as a result of climatic and other stresses.  相似文献   

17.
We explore the problem of integrating some of the many factors involved in conservation planning by focusing on their effects on a common currency of conservation success, the probability of persistence. This approach has the potential to reduce many of the difficulties inherent in combining different pattern and process factors. For handling information expressed as probabilities, five area-selection methods are compared.  相似文献   

18.
If current trends continue, human activities will drastically alter most of the planet's remaining natural ecosystems and their composite biota within a few decades. Compounding the impacts on biodiversity from deleterious management practices is climate variability and change. The Intergovernmental Panel on Climate Change (IPCC) recently concluded that there is ample evidence to suggest climate change is likely to result in significant impacts on biological diversity. These impacts are likely to be exacerbated by the secondary effects of climate change such as changes in the occurrence of wildfire, insect outbreaks and similar disturbances. Current changes in climate are very different from those of the past due to their rate and magnitude, the direct effects of increased atmospheric CO2 concentrations and because highly modified landscapes and an array of threatening processes limit the ability of terrestrial ecosystems and species to respond to changed conditions. One of the primary human adaptation option for conserving biodiversity is considered to be changes in management. The complex and overarching nature of climate change issues emphasises the need for greatly enhanced cooperation between scientists, policy makers, industry and the community to better understand key interactions and identify options for adaptation. A key challenge is to identify opportunities that facilitate sustainable development by making use of existing technologies and developing policies that enhance the resilience of climate-sensitive sectors. Measures to enhance the resilience of biodiversity must be considered in all of these activities if many ecosystem services essential to humanity are to be sustained. New institutional arrangements appear necessary at the regional and national level to ensure that policy initiatives and research directed at assessing and mitigating the vulnerability of biodiversity to climate change are complementary and undertaken strategically and cost-effectively. Policy implementation at the national level to meet responsibilities arising from the UNFCCC (e.g., the Kyoto Protocol) and the UN Convention on Biological Diversity require greater coordination and integration between economic sectors, since many primary drivers of biodiversity loss and vulnerability are influenced at this level. A case study from the Australian continent is used to illustrate several key issues and discuss a basis for reform, including recommendations for facilitating adaptation to climate variability and change.  相似文献   

19.
The general principles of scale and coarse and fine filters have been widely accepted, but management agencies and industry are still grappling with the question of what to monitor to detect changes in forest biodiversity following forest management. Part of this problem can be attributed to the lack of focused questions for monitoring including absence of null models and predicted effects, a certain level of disconnect between research and management, and recognition that monitoring can be designed as a research question. Considerable research from the past decade has not been adequately synthesized to answer important questions, such as which species or forest attributes might be the best indicators of change. A disproportionate research emphasis has been placed on community ecology, and mostly on a few groups of organisms including arthropods, amphibians, migratory songbirds, and small mammals, while other species, including soil organisms, lichens, bats, raptors, some carnivores, and larger mammals remain less well-known. In most studies of community ecology, the question of what is the importance, if any, of the regularly observed subtle changes in community structures, and causes of observed changes is usually not answered. Hence, our ability to deal with questions of persistence is limited, and demographic research on regionally--defined key species (such as species linked to processes, species whose persistence may be affected, species with large home ranges, species already selected as indicators, and rare and threatened species) is urgently needed. Monitoring programs need to be designed to enable managers to respond to unexpected changes caused by forest management. To do this, management agencies need to articulate null models for monitoring that predict effects, focus fine--scale monitoring on key species (defined by local and regional research) in key habitats (rare, declining, important) across landscapes, and have a protocol in place to adapt management strategies to changes observed. Finally, agencies must have some way to determine and define when a significant change has occurred and to predict the persistence of species; this too should flow from a well--designed null model.  相似文献   

20.
Atmospheric change comprises many phenomena, namely climate change, acidic deposition, stratospheric ozone depletion, SMOG, increasing trend of suspended particulate matter, and hazardous air pollutants (HAPs). Among HAPs, a particular group of Persistent Organic Pollutants (POPs), such as some organochlorine pesticides, has shown a variety of toxic effects, altering the biodiversity of many ecosystems. Because of their persistence in the environment, and of their long range transport, the study of the global cycle of POPs is important in understanding how they can affect biodiversity. This can be accomplished by coupling different approaches: toxicity and ecological studies, emission estimates, and the use of global models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号