首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Solid phase microextraction (SPME) was used for the extraction of residual coumaphos and dichlorvos in whole milk. The residues were analyzed by capillary gas chromatography equipped with nitrogen phosphorus detector (GC-NPD). A manual SPME holder with a 100-μm polyacrylate fiber was used. The optimized conditions for extraction by SPME method were: sample agitation, absorption temperature of 30°C, absorption time of 40 min, desorption time of 10 min, and sample volume was 16.0 mL in the vial. Under these conditions, the calibration graphs were linear in the range of 0.17 μgL?1 to 1.75 μgL?1 for coumaphos and 0.69 μgL?1 to 6.90 μgL?1 for dichlorvos. Precision was good with RSD values of 13% for coumaphos and 14% for dichlorvos. The detection limits (LOD) were 0.060 μgL?1 for dichlorvos and 0.052 for coumaphos. The quantification limits (LOQ) were 0.086 μgL?1 for dichlorvos and 0.066 μgL?1 for coumaphos. The results obtained in this study suggest that SPME is a suitable technique for residual pesticide analysis of milk. The data demonstrate that particular OP pesticides used in dairy farming in the region of Minas Gerais were found to contaminate cow whole milk, and the residues are not removed by treating the milk by boiling.  相似文献   

2.
Analytical methods for the isolation and determination of cypermethrin in milk, based on the solid-phase microextraction (SPME) and QuEChERS methods (Quick, Easy, Cheap, Effective, Rugged, and Safe) are presented. The SPME technique was not appropriate to analyse cypermethrin in milk, even establishing the best extraction conditions, polydimethylsiloxane fiber, 60 min time extraction, 60 °C temperature extraction, addition of salt (NaCl) and stirring rate. The extraction efficiency was low probably because of the matrix constituents. The QuEChERS method involves the extraction of the analyte with acetonitrile and simultaneous liquid-liquid partitioning formed by adding anhydrous MgSO(4) plus NaCl, followed by the removal of residual water and cleanup using a procedure called dispersive solid-phase extraction, in which anhydrous MgSO(4) plus PSA and C18 are mixed with 1 mL of acetonitrile extract. The detection and quantification limits were 0.01 and 0.04 mg kg(-1), respectively, and the percentage recovery obtained ranged from 92 to 105% with relative standard deviations below 7%.  相似文献   

3.
Analytical methods for the isolation and determination of cypermethrin in milk, based on the solid-phase microextraction (SPME) and QuEChERS methods (Quick, Easy, Cheap, Effective, Rugged, and Safe) are presented. The SPME technique was not appropriate to analyse cypermethrin in milk, even establishing the best extraction conditions, polydimethylsiloxane fiber, 60 min time extraction, 60 °C temperature extraction, addition of salt (NaCl) and stirring rate. The extraction efficiency was low probably because of the matrix constituents. The QuEChERS method involves the extraction of the analyte with acetonitrile and simultaneous liquid-liquid partitioning formed by adding anhydrous MgSO4 plus NaCl, followed by the removal of residual water and cleanup using a procedure called dispersive solid-phase extraction, in which anhydrous MgSO4 plus PSA and C18 are mixed with 1 mL of acetonitrile extract. The detection and quantification limits were 0.01 and 0.04 mg kg?1, respectively, and the percentage recovery obtained ranged from 92 to 105% with relative standard deviations below 7%.  相似文献   

4.
An in-line system for trace persistent organic pollutants (POPs) in water was developed by using a laboratory-made hollow fiber membrane (HFM) unit connected with a high-resolution gas chromatograph-mass spectrometer (HRGC-MS). The semivolatile organic compound, 4,4'-Dichlorodiphenyl trichloroethane (4,4'-DDT), was chosen as a representative of a persistent organic compound. The synthetic water contaminated with 4,4'-DDT was passed through the HFM unit, the extraction occurred by the analyte pervaporated and permeated, then stripped into HRGC-MS. Several factors were investigated for the high extraction efficiency. The best performance was obtained at sample and stripping gas flow rates of 6 and 9 mLmin-1, respectively, and desorption temperature of 60 degrees C. At this temperature, the diffusion rate was enhanced by 15 times over 25 degrees C. A wide linear dynamic range was obtained, i.e., 0.10-1.0 mgL-1, with a limit of detection (LOD) of 90 microgL-1. The extraction efficiency of 4,4'-DDT in real water samples was in the range of 83-94%. Real water samples were analyzed and 0.6 microgL-1 of 4,4'-DDT was found in unregistered bottled water and 7.0 microgL-1 in tap water.  相似文献   

5.
Yo SP 《Chemosphere》1999,38(4):823-834
The main purpose of this study is to develop a reliable Solid Phase Microextraction (SPME) method for monitoring the concentration of volatile fatty acid (VFA) in the wastewater collected from pig farms. Ten volatile fatty acid species were spiked in 2 ml of swine wastewater and extracted with a carbowax coated extraction fiber to evaluate the accuracy and precision of the method. The fiber was introduced into a gas chromatography system by thermal desorption and detected by a mass spectrometer detector. The estimated method detection limits ranged from 11.5 mM/L for formic acid to 0.03 mM/L for heptanoic acid. The method is more sensitive than the sample direct injection method. The percentage recovery of analytes ranged from 77.3 for propanoic acid to 114.1 for formic acid at the spike level of 19.09 mM/L. The compound absorption rate varied significantly with the fiber absorption time for n-Valeric, isocaproic, n-caproic and heptanoic acids. An SPME method with twenty minutes fiber absorption and three minutes thermal desorption was tested in this study and resulted in good reproducibility for analyzing VFAs in swine wastewater. The method may be applied for scanning a wide spectrum of polar organic compounds in environmental samples.  相似文献   

6.
A solid-phase microextraction (SPME) procedure has been developed to ex tract eight organophosphorus pesticides (OPs) in water and the method was compared with a conventional solid phase extraction (SPE) technique. The extracted OPs were analyzed by gas chromatography using thermionic specific detection. Both extraction methods presented linear calibration at least over the concentration range investigated (100 to 1000 ng.mL?1 for SPE and 1 to 100 ng.mL?1 for SPME). SPME method presented higher sensitivity than SPE. The quantitation limits were between 0.1 to 1.0 ng.mL?1 for SPME depending upon the analyte, and 100 ng.mL?1 for SPE. The precision, as measured by the standard deviations (RSD), were in the range 3.6 % to 5.8 % for SPME and 2.4 % to 9.2 % for SPE.

Along with the feature of being a solvent – free sampling technique, SPME offers additional benefits due to its high sensitivity, simplicity, and small size sample required (typically: SPE – 500 mL, SPME – 5 mL).  相似文献   

7.
In this study, a version of the "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) method was modified to use ethyl acetate (EtOAc) rather than acetonitrile (MeCN) for extraction in the determination of multiple pesticide residues in fruits and vegetables. EtOAc is better suited than MeCN for gas chromatographic (GC) analysis with electron capture detection (ECD) and nitrogen-phosphorus detection (NPD). The method entailed extraction of 30 g chopped sample plus 5 g NaHCO(3) and 30 g anhydrous Na(2)SO(4) with 60 mL EtOAc using a probe blender. After a centrifugation step, removal of residual water and cleanup were performed using dispersive solid-phase extraction (dispersive-SPE) with MgSO(4) and primary secondary amine (PSA) sorbent. (14)C-labeled chlorpyrifos with liquid scintillation counting was used to assist in optimizing and characterizing the method, and GC-ECD and GC-NPD were used for analysis of 24 selected pesticides. The method was validated using tomato, apple and frozen green bean matrices spiked at 0.05, 0.5, and 5 mg/kg. For 22 of the analytes, recoveries averaged 93% for all three commodities over the validation range with a relative standard deviation of 10% (n = 1182). Lower recoveries of dichlorvos were obtained with the method and iprodione determination was compromised in the green beans by an interfering peak. Typical limits of detection were 0.005-0.01 mg/kg with the method.  相似文献   

8.
A solid-phase microextraction (SPME) procedure has been developed to extract eight organophosphorus pesticides (OPs) in water and the method was compared with a conventional solid phase extraction (SPE) technique. The extracted OPs were analyzed by gas chromatography using thermionic specific detection. Both extraction methods presented linear calibration at least over the concentration range investigated (100 to 1000 ng x mL(-1) for SPE and 1 to 100 ng x mL(-1) for SPME). SPME method presented higher sensitivity than SPE. The quantitation limits were between 0.1 to 1.0 ng x mL(-1) for SPME depending upon the analyte, and 100 ng x mL(-1) for SPE. The precision, as measured by the standard deviations (RSD), were in the range 3.6% to 5.8% for SPME and 2.4% to 9.2% for SPE. Along with the feature of being a solvent - free sampling technique, SPME offers additional benefits due to its high sensitivity, simplicity, and small size sample required (typically: SPE - 500 mL, SPME - 5 mL).  相似文献   

9.
Solid-phase microextraction (SPME) with gas chromatography is to be used for assay of effluent liquid samples from soil column experiments associated with VOC fate/transport studies. One goal of the fate/transport studies is to develop accurate, highly reproducible column breakthrough curves for 1,2-cis-dichloroethylene (cis-DCE) and trichloroethylene (TCE) to better understand interactions with selected natural solid phases. For SPME, the influences of the sample equilibration time, extraction temperature and the ratio of volume of sample bottle to that of the liquid sample (V(T)/V(w)) are the critical factors that could influence accuracy and precision of the measured results. Equilibrium between the gas phase and liquid phase was attained after 200 min of equilibration time. The temperature must be carefully controlled due to variation of both the Henry's constant (K(h)) and the fibre/gas phase distribution coefficient (K(fg)). K(h) decreases with decreasing temperature while K(fg) increases. Low V(T)/V(w) yields better sensitivity but results in analyte losses and negative bias of the resultant assay. High V(T)/V(w) ratio yields reduced sensitivity but analyte losses were found to be minimal, leading to better accuracy and reproducibility. A fast SPME method was achieved, 5 min for SPME extraction and 3.10 min for GC analysis. A linear calibration function in the gas phase was developed to analyse the breakthrough curve data, linear between a range of 0.9-236 microgl(-1), and a detection limit lower than 5 microgl(-1).  相似文献   

10.
To estimate the atmospheric exposure of the greenhouse workers to pesticides, solid phase microextraction (SPME) was used under non-equilibrium conditions. Using Fick's law of diffusion, the concentrations of pesticides in the greenhouse can be calculated using pre-determined sampling rates (SRs). Thus the sampling rates (SRs) of two modes of SPME in the lab and in the field were determined and compared. The SRs for six pesticides in the lab were 20.4-48.3 mL min−1 for the exposed fiber and 0.166-0.929 mL min−1 for the retracted fiber. In field sampling, two pesticides, dichlorvos and cyprodinil were detected with exposed SPME. SR with exposed SPME for dichlorvos in the field (32.4 mL min-1) was consistent with that in the lab (34.5 mL min-1). SR for dichlorvos in the field (32.4 mL min−1) was consistent with that in the lab (34.5 mL min−1). The trends of temporal concentration and the inhalation exposure were also obtained.  相似文献   

11.
Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4-methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

12.
Abstract

Dissipation, degradation and leaching of fresh 14C coumaphos, alkylated 14C coumaphos and aged residues of 14C coumaphos from vats were studied in alkaline sandy loam soil in soil columns in the field under subtropical conditions in Delhi for a year. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than fresh coumaphos. After 365 days total residues of fresh coumaphos accounted for 33.25% while that of alkali treated coumaphos was 19.12%. Bound residue formation was almost double in case of alkali treated coumaphos (18.95%) than fresh coumaphos (9.53%) after 150 days followed by release of bound residue in both the cases. The proportion of metabolites 4 ‐ methylumbelliferone, chlorferon and potasan collectively was 86.05% in fresh coumaphos extractable residues while the same was 91.74% in alkali treated coumaphos after 365 days. Aged residues from vats containing copper sulphate and buffer were found to be more persistent in soil as total residues remained were 95.58% in comparison with 83.09% total residues of aged residues from vats containing only buffer after 150 days of treatment. Copper sulphate seems to inhibit the degradatiion of coumaphos in soil by microorganisms. Chlorferon was the major metabolite in generally all the samples. Coumaphos did not leach below 10 cm in all the cases.  相似文献   

13.
Diethyl (carboxymethyl) phosphonate (DECP) was used as the hapten to develop an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for detecting organophosphorus pesticides (OPs). Conjugator of DECP with bovin serum albumin (BSA) was used as the immunogen for producing the polyclonal antibodies (PcAbs). Three antisera were obtained after the immune procedure. Characterization studies of the PcAbs indicated that the titer of antiserum-1 was highest in 3 antisera, and antiserum-1 had high affinity and specificity to the parathion, dichlorvos and pirimiphos. The IC-ELISA showed an IC50 of 0.428 micro g/mL with a detection limit of 0.0125 micro g/mL to parathion. The assay also indicated that the IC50 values of pirimiphos and dichlorvos were 0.331 micro g/mL and 1.25 micro g/mL respectively, and the detection limits of pirimiphos and dichlorvos were 0.0116 micro g/mL and 0.048 micro g/mL respectively. Recoveries of parathion, pirimiphos and dichlorvos spiked into water samples ranged from 90% to 160%. The results indicated that the ELISA could be a convenient and supplemental analytical tool for monitoring OPs residues in environmental water samples.  相似文献   

14.
A solid-phase microextraction (SPME) method was developed for the analysis of acidic pesticide residues in water. The method utilizes in situ derivatization with butylchloroformate (BuCF), followed by on-line SPME extraction using a PDMS fibre, and analysis by GC-MS. Derivatives of the phenoxy acids mechlorprop (MCPP), dichlorprop (DCPP), MCPA and 2,4-D and their phenol degradation products 4-chloro-2-methylphenol and 2,4-dichlorophenol (DCP) were identified. Detection limits at 0.16-2.3 microg/l were achieved. Optimization of derivatization, ion strength, extraction time, SPME-fibre, desorption time and temperature are described. Standard curves in the range 0.5-10.0 microg/l were fitted to a second-degree polynomial. Standard deviation (n = 5) was below 10% for the phenol derivatives, but 20-50% for the phenoxy acids. For method verification groundwater samples from a field experiment were screened for content of MCPP and compared to the results from the HPLC analysis. A good agreement was obtained with respect to identification of positive samples, even though concentrations measured by the SPME were lower than with HPLC. Even if the precision and accuracy do not meet the demands for a strictly quantitative analysis, the SPME method is suitable for screening, because it is cheap, it can be automated, and uses smaller amounts of potential harmful solvents. Also, the method is less labour-intensive, as it requires a minimum of sample preparation when compared to traditional analyses. The acidic pesticides bentazon, dicamba, bromoxynil, ioxynil, dinoseb and DNOC were included in the study but could not be analysed by the current method.  相似文献   

15.
Diethyl (carboxymethyl) phosphonate (DECP) was used as the hapten to develop an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for detecting organophosphorus pesticides (OPs). Conjugator of DECP with bovin serum albumin (BSA) was used as the immunogen for producing the polyclonal antibodies (PcAbs). Three antisera were obtained after the immune procedure. Characterization studies of the PcAbs indicated that the titer of antiserum-1 was highest in 3 antisera, and antiserum-1 had high affinity and specificity to the parathion, dichlorvos and pirimiphos. The IC-ELISA showed an IC50 of 0.428 μ g/mL with a detection limit of 0.0125 μ g/mL to parathion. The assay also indicated that the IC50 values of pirimiphos and dichlorvos were 0.331 μ g/mL and 1.25 μ g/mL respectively, and the detection limits of pirimiphos and dichlorvos were 0.0116 μ g/mL and 0.048 μ g/mL respectively. Recoveries of parathion, pirimiphos and dichlorvos spiked into water samples ranged from 90% to 160%. The results indicated that the ELISA could be a convenient and supplemental analytical tool for monitoring OPs residues in environmental water samples.  相似文献   

16.
A procedure based on solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometry (GC-MS) was developed and validated in order to analyse 10 phenols in water samples. The optimised conditions were obtained using polyacrylate fibre (PA), 20ml of sample volume, 10% NaCl, pH 4.0 and direct extraction at 35 degrees C and 1000rpm, for 40min. The linear range and quantification limits for these compounds by SPME-GC-MS were defined. An evaluation of the main uncertainty sources of this method is included, which allows expanded uncertainties in the 9.4-35% range for the majority of the compounds. The main source of uncertainty is associated with matrix effects. The validated method is suitable for monitoring the production and distribution of potable water and was used, in field trials, for the analysis of samples from main intakes of water (surface or underground) and from water supply system of a large area (Lisbon and neighbour municipalities).  相似文献   

17.
Determination of acaricide residues of flumethrin, tau-fluvalinate, coumaphos, and amitraz in honey and beeswax was carried out using a rapid extraction method utilizing C-18 SPE cartridges and an analytical method utilizing GC with ECD, NPD, and MSD detectors for the four acaricides. Recovery percentages from the extraction method ranged from 90-102%, while the minimum detection levels ranged from 0.01-0.05 mg/kg for the acaricides. Nine of the 21 analyzed samples were found to be contaminated with the acaricides tau-fluvalinate and coumaphos. Neither flumethrin nor amitraz was detected in any of the honey or wax samples. Coumaphos was found only in honey samples in which two samples exceeded the tolerance levels set by EPA and EC regulations. It has not been detected in beeswax. Five honey samples and eight beeswax samples were found to be contaminated with tau-fluvalinate. One of the wax samples was contaminated with a relatively high residue of tau-fluvalinate and contained above 10 mg/kg.  相似文献   

18.
Li W  Ma Y  Li L  Qin DM  Wu YJ 《Chemosphere》2011,82(6):829-833
The residual levels and dissipation rate of trichlorfon, and its degradation product, dichlorvos, in cabbage crops and the soil in which these were grown, were determined by gas chromatography at two geographically distant experimental sites, one in Kunming and one in Beijing, China. Trichlorfon was applied at two dosages (900 g ai ha−1 and 1350 g ai ha−1). Maximum final residues of trichlorfon in soil and cabbage were 1.23 mg kg−1 and 1.81 mg kg−1 respectively at Kunming, and 0.35 mg kg−1 and 0.70 mg kg−1 respectively at Beijing. However, the final residues of dichlorvos in both cabbage and soil was only 0.04 mg kg−1 at Kunming, and only 0.03 mg kg−1, or “not detectable”, at Beijing. The mean half-life of trichlorfon in cabbage was 1.80 d with a dissipation rate of 90% over 5 d, while that in soil was 3.05 d with a dissipation rate of 90% over 14 d at one experimental site. The dissipation rates of trichlorfon and its degradation product dichlorvos at the two experimental sites were different, suggesting that degradation of these pesticides was affected by local soil characteristics and climate. When applied at both the recommended dosage and at 1.5 times this, no detectable residues of either trichlorfon or dichlorvos were found in soil or cabbage at harvest. Although trichlorfon can easily degrade into dichlorvos, which is highly toxic to humans and other animals, the observed low residual levels of dichlorvos suggest that trichlorfon is safe when applied at the recommended dosage.  相似文献   

19.
The reproducibility of extraction of residues from spiked soil samples and from soils containing incurred residues was tested with 14C-labeled test compounds of different physical-chemical properties. Nearly 100% of the compounds added to the sample before extraction could be recovered with an average reproducibility relative standard deviation (CV) of 5.4%. The additional steps of the determination process (cleanup, evaporation, etc.) contributed to the major part of the variability of the results (CV = 10–20%). The incurred residues were most efficiently extracted with acetone for 30 min followed by the mixture of acetone/ethyl acetate 1:1 for additional 30 min. However, they could only be recovered at various extent (64–90% of total residues), underlying the importance of testing the efficiency of extraction. The residues were identified and quantified by gas chromatography applying thermionic detector. The performance parameters of the method complied with the international method validation guidelines, and they proved to be robust and suitable for determination of pesticide residues in soils of widely different physical–chemical properties.  相似文献   

20.

Determination of acaricide residues of flumethrin, tau-fluvalinate, coumaphos, and amitraz in honey and beeswax was carried out using a rapid extraction method utilizing C-18 SPE cartridges and an analytical method utilizing GC with ECD, NPD, and MSD detectors for the four acaricides. Recovery percentages from the extraction method ranged from 90–102%, while the minimum detection levels ranged from 0.01–0.05 mg/kg for the acaricides. Nine of the 21 analyzed samples were found to be contaminated with the acaricides tau-fluvalinate and coumaphos. Neither flumethrin nor amitraz was detected in any of the honey or wax samples. Coumaphos was found only in honey samples in which two samples exceeded the tolerance levels set by EPA and EC regulations. It has not been detected in beeswax. Five honey samples and eight beeswax samples were found to be contaminated with tau-fluvalinate. One of the wax samples was contaminated with a relatively high residue of tau-fluvalinate and contained above 10 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号