首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Chlorination of bisphenol A: kinetics and by-products formation   总被引:6,自引:0,他引:6  
The kinetics of initial chlorination of bisphenol A (BPA) was studied between pH 2 and 11 at room temperature (20 +/- 2 degrees C). pH Profile of the apparent second-order rate constant of the reaction of BPA with chlorine were modeled considering the elementary reactions of HOCl with BPA species and an acid-catalyzed reaction. The predominant reactions at near neutral pH were the reactions of HOCl with the two phenolate species of BPA (k = 3.10 x 10(4) M(-1)s(-1) for BPA- and 6.62 x 10(4) M(-1) s(-1) for BPA(2-)). At near neutral pH, half-life times of BPA were calculated to be less than 1.5 h for chlorine residual higher than 0.2 mg l(-1). Chlorination of synthetic treated waters spiked with BPA showed that BPA disappeared within 4 h and that chlorinated bisphenol A congeners were rapidly formed and remained in solution for up to 10-20 h when low chlorine dosages are applied (0.5-1 mg l(-1)). To limit their presence in drinking water networks, it is then necessary to maintain high chlorine residuals that rapidly produce and decompose chlorinated bisphenol A congeners.  相似文献   

4.
George C  Chovelon JM 《Chemosphere》2002,47(4):385-393
The rate constant for the reaction of sulphate radical (SO4-) with Cl- has been determined using laser photolysis, at 248 nm, of peroxodisulphate anions to produce the radicals and time resolved optical absorption of the transient species (at 450 or 480 nm for SO4- and 350 nm for Cl2-) for the kinetic determinations. The experiments were performed, in the absence of added sulphate, as a function of temperature and ionic strength and yielded (at an ionic strength of 0.0157 M): kIV = (9.90+/-0.16) x 10(9) exp((-7.12+/-2.0) kJ mol(-1)/RT) M(-1) s(-1), where the errors reflect the 2sigma statistical error. This reaction produces Cl2-, the formation and decay of which were also monitored allowing a determination of the rate constant of its second-order self-recombination reaction which gave k = (6.50+/-1.40) x 10(8) M(-1) s(-1) at 293 K and zero ionic strength.  相似文献   

5.
Xia C  Lam JC  Wu X  Sun L  Xie Z  Lam PK 《Chemosphere》2011,82(11):1662-1668
This study reports concentrations of hexabromocyclododecanes (HBCDs) in two species of marine fish, large yellow croaker (Pseudosciaenacrocea) and silver pomfret (Pampusargenteus) (n = 46), from nine Chinese coastal cities (Dalian, Tianjin, Qingdao, Shanghai, Zhoushan, Wenzhou, Fuzhou, Quanzhou and Xiamen). HBCDs were detectable in all samples analyzed, indicating ubiquitous contamination of these compounds in the Chinese coastal environment. The average total HBCD concentration was 3.7 ng g−1 lipid weight (range: 0.57-10.1 ng g−1 lipid weight), which is relatively lower than other regions of the world, especially Europe, where HBCDs are intensively used. Among the three individual HBCD isomers (α-, β- and γ-HBCD) in all fish samples, the α-isomer showed a remarkable predominance (from 87.5% to 100% of total contribution), indicating its higher bioaccumulative potential. Geographically, the highest HBCD level present in fish was found in Dalian in northern China, and the lowest occurred in Wenzhou. Estimated daily intakes of HBCDs via fish consumption for the Chinese population were 0.004-1.00 ng kg body weight−1 d−1. These exposure levels were much lower than the effect levels.  相似文献   

6.
Sharma VK  Mishra SK  Ray AK 《Chemosphere》2006,62(1):128-134
Sulfamethoxazole (SMX), a worldwide-applied antibacterial drug, was recently found in surface waters and in secondary wastewater effluents, which may result in ecotoxical effects in the environment. Herein, removal of SMX by environmentally-friendly oxidant, potassium ferrate(VI) (K(2)FeO(4)), is sought by studying the kinetics of the reaction between Fe(VI) and SMX as a function of pH (6.93-9.50) and temperature (15-45 degrees C). The rate law for the oxidation of SMX by Fe(VI) is first-order with respect to each reactant. The observed second-order rate constant decreased non-linearly from 1.33+/-0.08 x 10(3) M(-1)s(-1) to 1.33+/-0.10 x 10(0) M(-1)s(-1) with an increase of pH from 7.00 to 9.50. This is related to protonation of Fe(VI) (HFeO(4)(-) <==> H(+) + FeO(4)(2-); pK(a,HFeO(4)) = 7.23) and sulfamethoxazole (SH <==> H(+) + S(-); pK(a,SH)=5.7). The estimated rate constants were k(11)(HFeO(4)(-) + SH) = 3.0 x 10(4) M(-1)s(-1), k(12)(HFeO(4)(-) + S(-)) = 1.7 x 10(2) M(-1)s(-1), and k(13) (FeO(4)(2-) + SH) = 1.2 x 10(0) M(-1)s(-1). The energy of activation at pH 7.0 was found to be 1.86+/-0.04 kJ mol(-1). If excess potassium ferrate(VI) concentration (10 microM) is used than the SMX in water, the half-life of the reaction using a rate constant obtained in our study would be approximately 2 min at pH 7. The reaction rates are pH dependent; thus, so are the half-lives of the reactions. The results suggest that K(2)FeO(4) has the potential to serve as an oxidative treatment chemical for removing SMX in water.  相似文献   

7.
A laboratory study was conducted to examine cosolvent-enhanced in-situ chemical oxidation (ISCO) of perchloroethylene (PCE) using potassium permanganate (KMnO4). The conceptual basis for this new technique is to enhance permanganate oxidation of dense non-aqueous phase liquids (DNAPLs) with the addition of a cosolvent, thereby increasing DNAPL solubility while avoiding mobilization. Among 17 cosolvent candidates screened, tertiary butyl alcohol (TBA) and acetone were the most stable in the presence of KMnO4, both of which increased PCE aqueous solubility significantly, and therefore are suitable to be used as cosolvent in this study. Batch experiments indicated that the second-order rate constant for PCE oxidation by potassium permanganate was 0.043+/-0.002 M(-1) s(-1) in the purely aqueous (no cosolvent) solution. In the presence of 20% cosolvent (volume fraction=fc=0.2), the rate constant decreased to 0.036+/-0.003 M(-1) s(-1) with TBA and to 0.031+/-0.002 M(-1) s(-1) with acetone. However, in the presence of free-phase PCE, chloride ion concentration from PCE oxidation in acetone/water solutions (fc=0.2) was about twice that in aqueous solutions, indicating that the increase in PCE solubility more than compensated for the decrease in reaction rate constant, such that the oxidation efficiency of PCE was increased with cosolvent. A complete chlorine mass balance was observed in the aqueous system, whereas approximately 70% was obtained in TBA/water or acetone/water (fc=0.2). In soil columns containing residual DNAPL and subjected to isocratic flushing with step-wise increases in f(c) cosolvent, TBA at fc=0.2 resulted in PCE mobilization, whereas acetone at fc相似文献   

8.
The kinetics, reaction pathways and product distribution of oxidation of tetrachloroethylene (PCE) by potassium permanganate (KMnO4) were studied in phosphate-buffered solutions under constant pH, isothermal, completely mixed and zero headspace conditions. Experimental results indicate that the reaction is first-order with respect to both PCE and KMnO4 and has an activation energy of 9.3+/-0.9 kcal/mol. The second-order rate constant at 20 degrees C is 0.035+/-0.004 M(-1) s(-1), and is independent of pH and ionic strength (I) over a range of pH 3-10 and I approximately 0-0.2 M, respectively. The PCE-KMnO4 reaction may proceed through further oxidation and/or hydrolysis reaction pathways, greatly influenced by the acidity of the solution, to yield CO2(g), oxalic acid, formic acid and glycolic acid. Under acidic conditions (e.g., pH 3), the further oxidation pathway will dominate and PCE tends to be directly mineralized into CO2 and chloride. Under neutral (e.g., pH 7) and alkaline conditions (e.g., pH 10), the hydroxylation pathway dominates the reaction and PCE is primarily transformed into oxalic acid prior to complete PCE mineralization. Moreover, all chlorine atoms in PCE are rapidly liberated during the reaction and the rate of chloride production is very close to the rate of PCE degradation.  相似文献   

9.
Volatile organic sulfur compounds in a stratified lake   总被引:3,自引:0,他引:3  
Hu H  Mylon SE  Benoit G 《Chemosphere》2007,67(5):911-919
Three volatile organic sulfur compounds (VOSCs), dimethyl sulfide (DMS), carbon disulfide (CS(2)), and dimethyl disulfide (DMDS), were detected in the stratified water column of a lake (Linsley Pond) in Connecticut. The compounds DMS and DMDS appeared in both the oxic and the anoxic portions of the water column, CS(2) was primarily found in anoxic hypolimnion. Algal metabolism and/or bacterial degradation of sulfur-containing amino acids or other organic materials are potential sources of VOSCs in the oxic lake water. Reactions of hydrogen sulfide with organic compounds and microbial degradation of organic matter may be responsible for the production of VOSCs in the anoxic lake water. The vertical distribution patterns of these three VOSCs varied from month to month in the summer, but the daily profiles obtained in one 5-day period in the summer displayed consistency. No clear diurnal pattern for any of the three VOSCs was observed. Based on observation that these VOSCs were not present in surface and near surface waters of Linsley Pond, freshwater inputs of reduced sulfur compounds to the atmosphere may be insignificant.  相似文献   

10.
Accumulation of sulfur-containing compounds and their bacterial mediated reductions have led to the emission of pungent odors from stagnant water bodies. This study is focused on the contribution of inorganic sulfur compounds in the emission of hydrogen sulfide. The measured dissolved oxygen levels have demonstrated good negative correlations with the dissolved sulfide levels implying the oxygen deficiency is the key for the reduction of sulfate ion and sulfite ion to sulfide ion. Particularly, the dissolved molar fractions of sulfide from the total dissolved sulfur compounds (sulfates, sulfites and sulfides) have a very good correlation with the dissolved oxygen for the stagnant water bodies except the artificially aerated prawn farms. For the stagnant water bodies with significant correlations, linear regressions are reported for them to be utilized in estimating one component of the regression from the measurement of the other. The measured data were further utilized to estimate the levels of hydrogen sulfide gas. The pH of the water bodies has confined much of the dissolved sulfides in the form of bisulfide ion and they can be easily escaped to the atmosphere upon acidification due to industrial discharges and/or acidic precipitations. The estimated levels of hydrogen sulfide just above the water surface were plotted for the most polluted stagnant water body in Sri Lanka for the pH range of 5-10 and temperature range of 25-35 degrees C.  相似文献   

11.
Brominated flame retardants, including hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are used to reduce the flammability of a multitude of electrical and electronic products, textiles and foams. The use of selected PBDEs has ceased, however, use of decaBDE and HBCD continues. While elevated concentrations of PBDEs in humans have been observed in Australia, no data is available on other BFRs such as HBCD. This study aimed to provide background HBCD concentrations from a representative sample of the Australian population and to assess temporal trends of HBCD and compare with PBDE concentrations over a 16 year period. Samples of human milk collected in Australia from 1993 to 2009, primarily from primiparae mothers were combined into 12 pools from 1993 (2 pools); 2001; 2002/2003 (4 pools); 2003/2004; 2006; 2007/2008 (2 pools); and 2009. Concentrations of ∑HBCD ranged from not quantified (nq) to 19 ng g(-1)lipid while α-HBCD and γ-HBCD ranged from nq to 10 ng g(-1)lipid and nq to 9.2 ng g(-1)lipid. β-HBCD was detected in only one sample at 3.6 ng g(-1)lipid while ∑(4)PBDE ranged from 2.5 to 15.8 ng g(-1)lipid. No temporal trend was apparent in HBCD concentrations in human milk collected in Australia from 1993 to 2009. In comparison, PBDE concentrations in human milk show a peak around 2002/03 (mean ∑(4)PBDEs=9.6 ng g(-1)lipid) and 2003/04 (12.4 ng g(-1)lipid) followed by a decrease in 2007/08 (2.7 ng g(-1)lipid) and 2009 (2.6 ng g(-1)lipid). In human blood serum samples collected from the Australian population, PBDE concentrations did not vary greatly (p=0.441) from 2002/03 to 2008/09. Continued monitoring including both human milk and serum for HBCD and PBDEs is required to observe trends in human body burden of HBCD and PBDEs body burden following changes to usage.  相似文献   

12.
对臭氧氧化去除焦化废水生化出水COD的反应动力学及其影响因素进行了实验研究,结果表明,在臭氧投加量为8.50mg/min,反应温度为20'E和初始pH为10.61条件下,对COD的降解符合表观一级反应动力学模型,其相关系数R。=0.9991,表观反应速率常数k。。=1.01×10^-3s-1。该条件下,臭氧氧化对COD的降解主要来源于高活性羟基自由基的强氧化作用。在不同的臭氧投加量(4.25~12.75mg/min)、不同的反应温度(10~40℃)和不同的初始pH(3.76~12.53)下,COD的降解也同样遵循一级反应动力学规律。随着臭氧投加量的增大,COD降解的表观反应速率常数从(0.554×10^-3)s-1增加到(1.06×10&-3)s-1;随着反应温度的升高,表观反应速率常数从(0.427×10^-3)s-1增加到(1.40×10-3)s-1,温度越高反应速率提高的幅度却越小;在初始pH3.76~10.61范围内,表观反应速率常数从(0.218×10^-3)s-1增加到(1.01×10^-3)s-1,在初始pH为12.53时表观反应速率常数下降到(0.857×10^-3)s-1。  相似文献   

13.
Haug LS  Thomsen C  Liane VH  Becher G 《Chemosphere》2008,71(6):1087-1092
In order to assess the quality and comparability of results from determinations of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) in biological samples, two interlaboratory comparison studies have been organized. Up to 13 laboratories determined either the total HBCD concentration, or concentrations of alpha-, beta- and gamma-HBCD, or both in cod liver oil, herring filet, salmon filet, butter and chicken meat. The laboratories were able to determine total HBCD concentrations in the marine samples with satisfying quality (RSD <35%). However, the analysis of samples with low HBCD contamination (相似文献   

14.
采用序批式气升环流反应器(SAR)处理硝基苯废水,研究了硝基苯浓度和COD/N对处理过程的影响,分析了缺氧段COD和硝基苯降解动力学。结果表明,硝基苯在缺氧段被还原为苯胺,而苯胺在好氧段得到快速降解。硝基苯与基质(葡萄糖-COD)最佳质量比为1∶35~1∶25,该条件下反应器对硝基苯和COD去除率分别可达99%~100%和92%~94%。由于受传质限制,进水需要维持106 mg/L的氨氮(葡萄糖-COD/N比值为100∶10)以满足缺氧段微生物对氨氮的营养需要。缺氧段COD的降解符合二级动力学,反应速率常数k2为2.7×10-4L·mg/h;硝基苯的降解符合一级动力学,反应速率常数k1为0.14 h-1。研究表明,序批式气升环流反应器可作为一种简单而有效的反应器用于处理硝基苯废水。  相似文献   

15.
Hexabromocyclododecanes (HBCDs) are high production volume chemicals currently produced in quantities exceeding 20000ty(-1). They are used as flame retardants for plastics and textiles. HBCDs are thermally labile compounds, rapidly decomposing at temperatures above 250 degrees C to form bromine radicals, which scavenge other radicals formed during pyrolysis. But certain HBCD stereoisomers must reach the environment without decomposition, because their levels in soils, sediments, and biota are increasing worldwide. The fate of individual HBCD stereoisomers during production, product use, disposal, and transformation in the environment remains unclear. Herein we report on the thermally induced, highly selective isomerization of (+) and (-)beta-HBCD. Regio- and stereoselective migration of only two of the six bromine atoms resulted in the racemization of both beta-HBCDs. First order rate constants (k(rac)) increased from 0.005, 0.011, 0.021, to 0.055min(-1) at 130, 140, 150, and 160 degrees C, corresponding to half life times tau(1/2) of 143, 63, 29, and 14min, respectively. From the deduced kinetic model, we conclude that any thermal treatment of enantiomerically enriched beta-HBCDs in the range of 100-160 degrees C will result in a loss of most optical activity within few hours. The simultaneous inversion of two asymmetric centers occurred with perfect stereocontrol. Selectively, vicinal dibromides with the RR- and the SS-configurations migrated at these temperatures. An intramolecular reaction mechanism with a four-center transition state is postulated, based on the obtained stereoisomer pattern and the observed reaction kinetics. Crystal structure analysis revealed that all vicinal dibromides in beta-HBCDs prefer synclinal (gauche) conformations. However, an antiperiplanar (staggered) conformation is assumed to facilitate the concerted 1.2-shifts of both bromine atoms, resulting in an inversion of both neighboring carbon atoms. First experiments with other HBCD stereoisomers suggest that the presented isomerization mechanism is of relevance for those stereoisomers as well.  相似文献   

16.
Background, Aims and Scope Despite the large number of studies on the forms of sulfur in marine deposits, investigations on sulfur organic compounds are still rare. It is known that the processes leading to formation of intermediate and final sulfur compounds (including organic ones) in modern deposits are the results of microbiological transformation of sulfur containing proteins, as well as the microbiological reduction of sulfate ions. The latter are finally reduced by anaerobic sulfate-reducing bacteria to H2S, HS and S2−; the total sum of these is referred to as ‘hydrogen sulfide’ in chemical oceanography. Further, the formation of reduced sulfur organic derivatives (sulfides and polysulfides) is the result of interaction of the organic substance destruction products with the sulfide ions. In such cases, the main source of organic substances, as well as sulfates for the sulfur reducing processes, is the pore water in the sediments. The choice of the target of our study is based on the fact that the eastern part of the Gulf of Finland water area receives the bulk of the anthropogenic load of the St. Petersburg region. Low vertical intermixing of the water thickness is observed there (thus creating a deficiency of oxygen near the bottom), and the bottom sea current transfers the polluted salty water of the Baltic Sea into the Neva Bay. The whole of the above are the preconditions for the formation of sulfur-bearing organic compounds. A great number of bottom sediment samples for analytical surveys were collected in the Eastern Gulf of Finland during research expeditions in the years of 1997 and 2001. These were screened for structures of sulfur organic microcontaminants, including organic forms of sulfur, using advanced instrumentation and experienced personnel in our two, cooperating laboratories. This work is a part of the research being carried out on organic micro-admixtures present in bottom sediments, and is the summary of our findings on previously unstudied sulfur organic substances there. Materials and Methods A number of sulfur organic compounds present in nineteen bottom sediment samples from the Eastern Gulf of Finland (EGF) were characterized by high performance gas chromatography connected to low and high resolution mass spectrometers (GC/LRMS and GC/HRMS). The structure screening was carried out as compared with literature and library mass spectra, and taking the GC retention times into account. In the cases of an absence of mass spectra not in the literature, interpretation of the most probable structures was performed with the help of high resolution mass-spectrometric data, fragmentation rules for sulfur-bearing organic substances and ICLU simulation of spectra. These data were registered to form a conclusive ‘fingerprint’ for identification and confirmation of the structure of each novel compound found, e.g. by later syntheses of authentic model compounds. The relative contents of sulfur organic compounds were determined from MS response ratios of each compound to 2-fluorine naphthalene (internal standard). Results This paper is a completion of work, which has been published in part as three papers in the European Journal of Mass Spectrometry. As the total study result, 43 sulfur-bearing compounds were characterized. The mass spectra of 20 of them were found in the literature. The most probable structures for the 23 compounds whose mass-spectra were not available in the literature data were proposed. All of those 23 compounds were detected in bottom sediments for the first time, and 5 of them were described as originating from plants or being generated by chemical synthesis products, while the remaining 18 substances were previously unknown. The structures of these were deduced to be most probably the following (in order of their GC retention): dichloromethyl thiylsulfenylchloride, chloromethyl dichloromethyl disulfide, 3,4-dithiacyclohexene, 1,2,4-trithiacycloheptane, 1,2,3-trithiacyclohexane, tetrathiacyclopentane, 3,4,5-trithiacyclohexene, 1,2,4-trithiacyclohexane, cyclopropylhydrotrisulfide, 1,2-dithiane-3-thiol, 1,3-dithiane-2-thiol, bis(trichloromethyl)-tri-sulfide, 1,2,4,5-tetrathiacyclohexane, 1,2,3,4-tetrathiacycloheptane, 1,2,3,4-tetrathiacycloheptane, 1,2,3,4-tetrathia-cyclo-hexane, pentathiacyclohexane, and 1,2,4,6-tetrathiacyclooctane. The highest amounts of sulfur organic compounds were found in the deepest, bottom areas in the open part of the sea, where the salinity was highest, and oxygen deficiency occurred as well. Also, some coastal places with a high solid matter deposition rate had elevated contents of sulfur organic compounds. Discussion From the 43 sulfur organic compounds found, the HRMS data provided the atomic composition of the molecular ions for 16 compounds with a high confidence (see Table 3). The LRMS spectra could be identified with catalogue or literature spectra in 29 cases. The MS information obtained was insufficient in two cases: 1) The obvious molecular ion (at m/z 110) of compound 1 was not visible in LRMS. 2) For compound 43, the HRMS measurement, due to the low intensity (2%) of the molecular ion (m/z 210), could not exclude the presence of 2 oxygen atoms (instead of one sulfur atom) in the molecule. Major fragments, however, of our 43, certainly contained no oxygen atoms according to HRMS. The limited LRMS data in the literature, for an isomer of 43, had m/z values of all fragments different from those of the compound found by us. The retention times (RT) formed one more evidence for identity between compounds in different samples. The use of different non-polar columns in GC and similar, but not identical, temperature programs produced eluted peaks of novel and known compounds in each sample (mixture) in GC/HRMS and GC/LRMS. These gave sets of RTs which were in a very significant linear correlation (measured example R = 0.999866, p = 1.85E-06, N = 5). Therefore, the RTs in the HRMS analysis systems could be converted to values comparable with those from the LRMS device. The RT values, HRMS m/z values, LRMS spectra, and ICLU simulation results for each organic sulfur compound form an identification ‘fingerprint’. The interpretation of these experimental data, with supporting use of fragmentation rules, allow the giving of a provisional name and structure to the ‘suspect’. In this study and in environmental surveys of micropollutants in general, the compounds suspected of anthropogenic or natural origin occur at low levels in complex mixtures. Therefore, no bulk amount of an authentic, pure model substance for the suspect is available quite often. The most probable name and structure from the fingerprint data are very useful in guiding the preparation of the model substance for a conclusive identification. Similarly, the unknown criminal can be identified in advance by forensic science and his fingerprint, DNA, etc. as registered before the arrest. The analogy can be found in the literature and CAS register of organic polysulfides, which in great part consists of the results of sensitive mixture analysis methods. Conclusions Sediment of the Eastern Gulf of Finland is over large areas anaerobic, as indicated by the existence of novel, non-oxygenated sulfur organic microcontaminants. These substances were most abundant in anoxic and saline, deep bottom regions, and, in addition, in one coastal area near industrial discharges. This occurrence, and also the limited information about sulfur organic compounds in scientific literature, is considered evidence for the dominantly natural processes in their formation. Recommendations and Perspectives The importance and necessity of investigating the sulfur organic compounds in the bottom sediments, result from the fact that their presence can be an indicator of stable anaerobic processes. Similarly, the oxygen disappearance (anoxia) in the marine water, due to a high concentration of the sulfate ions and relatively high content of organic matter, is practically always connected with the appearance of hydrogen sulfide and sulfides. The generation of sulfur organic compounds precedes the formation of the new, or expansion of the existing anaerobic (‘hydrogen sulfide’) zones, which lead to such environmental disasters as mass destruction of hydrobionts. Many organic compounds of sulfur, including sulfides and polysulfides, are toxic to the aquatic organisms. Therefore, in addition to the danger of mass wholesale deaths of marine fauna in the bottom sediments region, there exists a probability of secondary pollution of the water thickness as well, due to the entry of those substances from bottom sediments in the water when the environmental conditions are changed (stormy weather, floods, geological activity of the earth’s crust, etc.).  相似文献   

17.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

18.
In this paper, the first data on brominated flame retardants (BFRs), in particular polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) in eggs of bird species from South Africa are described (N=43). Concentrations of PBDEs were detected in all the studied species and in all the geographic areas. Highest concentrations of PBDEs were measured in bird eggs from the Vaal River, which is situated downstream of the most industrialized area in South Africa. Sum-PBDE concentrations were highest in eggs of one African sacred ibis (396 ng g(-1) lipid weight (lw)), possibly due to foraging on dumping sites. Lowest mean level of sum-PBDEs (2.3 ng g(-1) lw) was measured in cattle egrets (N=11) from Barberspan Sanctuary, a Ramsar site. The PBDE congener pattern showed large differences, reflecting different trophic levels, migratory behavior, distance to the source, and, exposure to different PBDE mixtures, among others. HBCD was detected only in four species, and highest levels were measured in one egg of African sacred ibis (71 ng g(-1) lw). In most species, levels of PBDEs were one to several orders of magnitude lower than levels of DDTs and PCBs. PBDEs correlated strongly with DDTs, PCBs and some other organochlorines (OCs), indicating the same source. The widespread occurrence of PBDEs in the South African avian species showed a strong need for further investigations of PBDEs in the Southern African environment.  相似文献   

19.
Anaerobic degradation of brominated flame retardants in sewage sludge   总被引:7,自引:0,他引:7  
Tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and decabromodiphenyl ether (DecaBDE) are high production volume chemicals used as flame retardants in plastics for products such as electronic equipment, insulation panels, and textiles. The environmental safety of brominated flame retardants, especially their persistence, bioaccumulation, and toxicity is a controversial topic. Here, we studied and compared the degradation of TBBPA, HBCD, and DecaBDE under anaerobic conditions in digested sewage sludge. The half-lives of TBBPA and a technical HBCD mixture were 0.59 and 0.66 d, respectively. The fact that (+/-)-alpha-HBCD exhibited an almost doubled half-life compared to (+/-)-beta-HBCD and (+/-)-gamma-HBCD is an important finding with respect to the discussion on the persistence of individual HBCD stereoisomers and the recent reports on strong relative enrichment of alpha-HBCD in biota. We found no statistically significant enantioselective degradation of alpha-, beta-, or gamma-HBCD. Half-lives of TBBPA and a technical HBCD mixture were not dependent on the presence of additional nutrients or primers. Concentrations of TBBPA and a technical HBCD mixture decreased also in sterile control samples, however, at a rate that was more than a factor of 50 smaller than in incubations under non-sterile conditions. Compared to TBBPA and a technical HBCD mixture, DecaBDE exhibited a much longer half-life of 7 x 10(2)d in the same system. Pseudo-first-order degradation rate constants decreased according to the following sequence: TBBPA congruent with(+/-)-gamma-HBCD congruent with(+/-)-beta-HBCD>(+/-)-alpha-HBCD>DecaBDE. Preliminary investigations suggest that degradation of TBBPA, HBCD, and DecaBDE occurs in full-scale anaerobic digesters, as well.  相似文献   

20.
Hu J  Jin J  Wang Y  Ma Z  Zheng W 《Chemosphere》2011,84(3):355-360
Air samples in four seasons at one site and tree bark samples from four districts were determined to investigate seasonal variation and regional distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) in Beijing, China. The total concentrations of PBDEs (∑PBDE) and HBCD (∑HBCD) were in the range of 57-470 and 20-1800 pg m−3 in the atmosphere, respectively. The ∑PBDE and ∑HBCD concentrations were significantly influenced by the total suspended particulate matter in atmosphere. The total concentrations of PBDEs and HBCD in tree bark samples were in the range of 99-3700 and 26-3400 ng g−1 lipid weight. It was found that regional distribution of PBDEs and HBCD was related to the function of each district. In addition, the study found that weeping willow bark was an ideal atmospheric PBDEs and HBCD passive sampler. Finally, atmospheric levels of BDE-209 and HBCD at tree bark sampling districts were estimated via applying an established bark/air partitioning model, which had been verified by the measured concentrations in tree bark and atmosphere in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号