首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Aluminium in water supplies derives from natural sources and from the use of Al2(SO4)3 in water treatment. Heavy metals such as Pb, Cu, Zn and Cd can be added to water from pipework and solder. However, it is apparent that AI and other metals in potable waters can derive from deposits on pipe walls which can be subsequently mobilised when the supply and/or treatment process is changed. Concentrations of Al in domestic supply water of the Llanbrynmair area have been shown to increase from 1 g to 50 g L–1 during its 18 km journey along the water main. Similarly, Pb concentrations in a public building in the Aberystwyth area are found to be extremely elevated due to the metal's mobilisation from encrustations occurring on the copper pipework.  相似文献   

2.
The chemistry of aluminum in the environment   总被引:6,自引:0,他引:6  
There is increased concern over the effects of elevated concentrations of Al in the environment. Unfortunately, studies of the environmental chemistry and toxicity of Al have been limited by our understanding of the processes regulating the aqueous concentration, speciation and bioavailability of this element.Although Al is the most abundant metallic element in the Earth's crust, it is highly insoluble and generally unavailable to participate in biogeochemical reactions. However, under highly acidic or alkaline conditions, or in the presence of complexing ligands, elevated concentrations may be mobilized to the aquatic environment. Ecologically significant concentrations of Al have been reported in surface waters draining acid-sensitive regions that are receiving elevated inputs of acidic deposition. Acid- sensitive watersheds are characterized by limited release of basic cations (Ca2+, Mg2+, Na+, K+) and/or retention of strong acid anions (SO4 2–, NO3 , Cl). Under these conditions inputs of strong acids are not completely neutralized, but rather acidic water is exported from the terrestrial environment. It has been hypothesized that acidic deposition to acid-sensitive watersheds mobilizes Al within the mineral soil, causing elevated concentrations in soil solutions and surface waters. As a result of mineral phase solubility constraints, concentrations of aqueous Al increase exponentially with decreases in pH below 6.0.Monomeric Al occurs as a series of complexes in the aqueous environment, including aquo, OH, F, SO4 2–, HCO3 and organic species. Of these aquo, OH, F and organic complexes are the most significant in natural waters.Elevated concentrations of Al are ecologically significant because: 1) Al is an important pH buffer in acidic waters, regulating the lower limit of pH values following acidification by strong acids; 2) through adsorption and coagulation reactions, Al may alter the cycling and availability of important elements like phosphorus, organic carbon and certain trace metals; 3) Al may serve as a coagulant facilitating the removal of light attenuating materials, thereby increasing the clarity and decreasing the thermal stability of lakes; and 4) Al is potentially toxic to organisms. Better understanding of the chemistry and speciation of Al is essential to assess these effects.  相似文献   

3.
This study investigated geochemical characteristics of the acid mine drainage (AMD) discharged from the abandoned mine adits in the vicinity of the Dogye coal mine in Korea. Acid mine drainage discharged from Jeoncha pit adit of the Dogye coal mine, which is the main source of the AMD in the study area, had a pH value of 3.0 and concentrations of 2148mg SO4 2– L–1, 229mg Fe L–1, 71mg A1 L–1 and 11mg Mn L–1. The reduction of some metal concentrations downstream from the discharge point could be explained on the basis of dilution and precipitation. The order of removal of metal ions downstream from the discharge point was Fe>A1, Cu>Zn, Mn. Acidity could be used as a good determining factor offering comprehensive and quantitative values for the polluting extent of acid mine drainage. The acidities existing in all acidic water samples in the Gunahan district originated primarily from mineral acidity, especially in the upper Nahan Creek from dissolved Fe and Al and in the middle and down Nahan Creek from dissolved Al. From the application of the WATEQ4F program, it was determined that predominant species of dissolved Fe in all water samples was Fe2+, and those of dissolved Al were AlSO4 + and Al3+ except for IW2 sample which was associated with white precipitates. The species of dissolved Al in IW2 sample include also AlOH2+ and Al(OH)2 +. The saturation indices of goethite and haematite were positive in the water samples associated with ochrous precipitates (usually called Yellow Boy), therefore these solids might be precipitated. For the IW2 sample, the saturation indices of amorphous Al(OH)3 and gibbsite were positive, so theoretically these solids might also be precipitated. By XRD analysis, it was found that goethite occurs in ochrous precipitates, and gibbsite in white precipitates.  相似文献   

4.
The present project aims to investigate aluminium (Al) and fluoride (F) contents in teas (Camellia sinensis (L.) O. Kuntze). Three different commercial tea varieties: Assam variety and two China sub-varieties, a large leafed variety and small leafed variety, were collected in two tea gardens of Lantau Island tea plantation of Hong Kong. In general, high concentrations of Al and F were accumulated in the mature leaves (15.3 and of 2.07 g kg–1 respectively). Among the three varieties, the small leafed variety exhibited the highest Al and F contents followed by the large leafed variety whereas the Assam variety had the lowest Al and F concentrations in its tea bushes. Tea products from a plantation were also analysed and it was noted that black tea had higher Al and F concentrations than green tea. The amount of Al and F released into tea liquor was also tested and the results showed that higher concentrations of Al and F were released into tea liquor under repeated infusion method than continuous infusion method.  相似文献   

5.
H. Holst  E. Zebe 《Marine Biology》1984,80(2):125-130
Absorption of volatile fatty acids (propionate, acetate, butyrate, and formiate) from the ambient water by the lugwormarenicola marina was demonstrated using14C-labelled compounds and by gas-liquid chromatography. Uptake was investigated in the presence of antibiotics. The rate of uptake was highest with propionate (vmax 0,58 mol g-1 w wt · h, Kt 0.75 mol l-1). Butyrate, acetate, and formiate were absorbed at lower rates in that order. Absorption of propionate, butyrate, and acetate showed saturation kinetics. In the presence of butyrate and acetate, propionate absorption was inhibited (maximum inhibition 78%). These results indicate that a carrier is involved in the absorption of propionate. Following absorption, the volatile fatty acids were rapidly metabolized. The largest proportion of label was incorporated into amino acids, with the pattern of distribution of radioactivity being specific for each volatile fatty acid.  相似文献   

6.
Heavy metals, including cadmium (Cd), lead (Pb) and mercury (Hg) act as nephrotoxic agents, particularly in the renal cortex. The aim of the study was to determine the concentrations of Cd, Pb and Hg in kidneys removed from patients due to lesions of various etiologies and from patients after the rejection of transplanted kidneys. Additionally, we determined the influence of selected biological and environmental factors on the concentrations of toxic metals. The study material consisted of kidneys with tumor lesions (n = 27), without tumors (n = 7) and its extracted grafts (n = 10) obtained from patients belongs to the north-western areas of Poland. The determined metal concentrations in the renal cortex and medulla may be arranged in the following descending order: Cd > Pb > Hg. The highest concentrations of Cd and Hg were found in the cortex, while the maximum content Pb was observed in the medulla. Significant correlations were found in the concentrations of the same metals between cortex and medulla and between Pb and Hg in the renal medulla. Pb content was higher in the renal medulla of men than in the cortex of the elderly (above 60 years of age). The highest concentrations of Pb and Hg were found in the cortex and medulla, of the kidneys had not neoplastic changes, and lower content of these metals were found in the extracted kidney grafts. In summary, renal grafts accumulate less heavy metals than cancerous kidneys, what could have been caused by immunosuppressors taken by the graft recipients. Moreover, sex, age and smoking are key factors responsible for xenobiotics concentrations.  相似文献   

7.
To study the kinetics of mercury uptake in oysters, adult Crassostrea virginica (Gmelin) were held in seawater containing 10 g mercury/l (ppb) or 100 g mercury/l (ppb), added in the form of mercuric acetate, for 60 days. Mercury concentration in tissues was determined by analysis of individually homogenized oyster meats, using wet digestion and flameless absorption spectrophotometry. After 45 days, average mercury tissue concentration was 140,000 g mercury/kg tissue (ppb) and 28,000 g mercury/kg tissue (ppb) in the 100 ppb and 10 ppb experimental groups, respectively. After this time, concentrations dropped sharply, probably due to spawning. Clearance of mercury from tissue was studied by exposing treated adults to estuarine water (with no additions) for 30 days (100 ppb group) and 160 days (10 ppb group). Tissue concentrations in the 100 ppb mercury environment group declined from 115,000 to 65,000 ppb, and those of the 10 ppb group declined from 18,000 to 15,000 ppb, in 18 days; there-after, no further decline occurred in either group. Oysters accumulated mercury 1,400 times and 2,800 times above the environmental concentrations of 100 and 10 ppb mercury, respectively. Total self-purification was not achieved over a 6 month cleansing period.  相似文献   

8.
Nine selected elements (Cu, Pb, As, Zn, Co, Ni, Cr, Cd and Fe) were determined by inductively coupled plasma atomic emission spectroscopy in 15 samples from the tailings pond (Zelazny Most) and waste water streams (Moskorzynke and Rudna) in the Kupferschiefer mining district in Southwest Poland. Waste water from mining and industry enter the Zelazny Most pond. The water then flows through Moskorzynke and Rudna streams, and discharges into the River Odra. The analytic results indicate that the contamination with Cu, Pb, Zn, As, Co, Cd and Fe extend about 6km along the streams in contrast to the nonpolluted samples close the River Odra. Their concentrations reach a level, which could be toxic for plants, animals and humans. The contamination with Ni and Cr continued at least 20km along Rudna stream. Besides mechanical transport, redox conditions and Corg contents also played an important role for trace element and Fe contamination in Rudna stream. The samples with high Corg contents have also high contents of trace metals. In Moskorzynke stream the element contamination was mainly caused by mechanical transport of particles. Polyaromatic hydrocarbon (PAH), which is abundant in Kupferschiefer, is toxic for animals and humans. The PAH concentration in the stream sediments was determined by GC and GC/MS. The results indicate that the contamination of PAH reaches 6 and 17mgkg–1 in samples TP1 and RS6, respectively. In the other samples, the PAH contents are lower than 3mgkg–1. Some PAH could be solved by waste water in the tailings pond and migrated to the stream sediments. Some PAH might be contained in particles which were transported mechanically from the tailings pond into stream sediments.  相似文献   

9.
The environmental impacts of Boroo gold mine project in Mongolia was evaluated by chemical characterization of trace element concentrations in water, soils and tailing dam sediment samples. The results showed that concentrations of B, Cd, Ni and Se in the water samples were within the accepted levels of the Mongolia water quality standard (MNS4586: 1998). However, the concentrations of Al, As, Cu, Mn, Fe, Pb, U and Zn were higher than the maximum allowable concentration especially in the monitoring and heap leach wells. The average concentrations of As, Cd, Cu, Ni, Pb and Zn in the tailing dam sediment were 4419, 58.5, 56.0, 4.8, 20.6 and 25.7 mg/kg, respectively. Generally, arsenic and heavy metals in the soil samples were within the acceptable concentrations of the soil standard of Mongolia (MNS 5850: 2008). The chemical characterization of As solid phase in tailing dam sediment showed that the majority of As were found in the residual fraction comprising about 74% of total As. Assessing the potential risk to humans, simple bioavailability extraction test was used to estimate bioavailability of arsenic and heavy metals, and the concentrations extracted from tailing dam sediment were; 288.2 mg/kg As, 7.2 mg/kg Cd, 41.1 mg/kg Cu, 13.5 mg/kg Pb, 4.7 mg/kg Ni and 23.5 mg/kg Zn, respectively. From these results, the Boroo gold mine project has presently not significantly impacted the environment, but there is a high probability that it may act as a source of future contamination.  相似文献   

10.
The Narim gold mine is located approximately 200km southeast of Seoul within the Sulcheon mineralised district in the Yeongnam massif, Korea. In this study, environmental geochemical analyses were undertaken for soil, sediment and water samples collected in April, September and November in 1998 from the Narim mine creek. The mine area consists mainly of granitic gneiss; however, mineral constituents of soil and sediment near the mine were mainly composed of quartz, feldspar, mica, amphibole, some pyrite and clay minerals. Also were found some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, goethite, various hydroxide and unidentified secondary minerals. Generally, high concentrations of heavy metals in the soil and sediment are correlated with a high proportion of secondary minerals. Hydrochemical compositions of water samples are characterised by relative significant enrichment of Na++K+ and alkali metals in the ground water, whereas the surface and mine waters are relatively enriched in Ca2++Mg2+ and heavy metals. Anion contents of the ground waters are typically enriched in HCO3 , NO3 and Cl, whereas the surface and mine waters are highly enriched in HCO3 and SO4 2–. The pH and EC values of the surface water from the non-mine creek are relatively lower compared with those of the surface water around the mine and waste dump. The range of D and 18O values (d parameters) of the water samples are shown in distinct two groups for the April waters of 10.1–13.1, and for the November waters of 5.8–7.9, respectively. This range variation indicates that two group water were composed of distinct waters because of seasonal difference. Geochemical modelling showed that mostly heavy toxic metals may exist largely in the form of free metal (M2+) and metal-sulphate (MSO4 2–), and SO4 2– concentration influenced the speciation of heavy metals in the mine water. These metals in the ground water could be formed of CO3 and OH complex ions. Using a computer program, saturation indices of albite, calcite, dolomite in mostly surface water show undersaturated and progressively evolved toward the saturation state, however, ground and mine waters are nearly saturated. The gibbsite, kaolinite and smectite are supersaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that the weathering of silicate minerals may be stable kaolinite. The clay minerals of K-illite and Na-smectite will be transformed to more stable kaolinite owing to the continuous reaction.  相似文献   

11.
Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of deadend filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.
  相似文献   

12.
According to generally accepted theory, persistent superlipophilic chemicals with logn-octanol/water partitioning coefficient (log Kow) >6 and molecular sizes >9,5 Å, such as octachlorodibenzo-p-dioxin, decachlorobiphenyl, Mirex etc., do not significantly bioconcentrate in aquatic organisms from ambient water. In the light of new results and considerations, this hypothesis has to be revised. The most convincing argument against this hypothesis is that in all bioconcentration experiments with superlipophilic chemicals compound concentrations have been applied which exceeded water solubility by several orders of magnitude. In this paper we describe various methods how to determine bioconcentration (BCF) factors of superlipophilic compounds. As exemplified with octachlorodibenzo-p-dioxin and Mirex, BCF values evaluated by this means match well those calculated by QSARs for fish and mussels based on log Kow and water solubility as well. As expected these BCF values exceed previous ones by several orders of magnitude. As practical consequences, we recommend for BCF evaluations of superlipophilic chemicals:
  1. flow-through systems, kinetic method (OECD guideline No 305 E)
  2. ambient concentrations≤water solubility.
*** DIRECT SUPPORT *** A00HP013 00002  相似文献   

13.
Juvenile Callinectes sapidus Rathbun were collected from brackish and hypersaline coastal environments in August 1986 and July 1987, respectively. The brackish collection site was a salt-marsh near Grand Isle, Louisiana (USA), and the hypersaline site was in the barrier island system on the north end of the Laguna Madre near Corpus Christi, Texas (USA). On the dates of collection, salinities fluctuated daily between 20 and 30 S and between 30 and 45 S at the brackish and hypersaline collection sites, respectively. The high-salinity 21 d LC50 (50% mortality) was 56.0 for brackish-water individuals and 66.5 S for hypersaline individuals. The brackish-water individuals survived 0 S. The lowsalinity 21 d LC50 was 0.5 S for the hypersaline individuals. Respiration and excretion comprised a small portion of the energy budget and did not vary with salinity for individuals from brackish water. However, both respiration and excretion increased with decreasing salinity in individuals from the hypersaline environment. Respiration accounted for more energy than excretion. As energetic expenditure (due to respiration and excretion) was relatively small, scope for growth usually paralleled energy absorption. Scope for growth responses to salinity differed significantly between crabs from the two environments. Peaks in scope for growth for both the brackish-water and hypersaline individuals corresponded to salinities normally encountered by these crabs in their natural habitats. Individuals from the brackish-water population had maximal energy absorption and scope for growth at 10 and 25 S. Individuals from the hypersaline population displayed maximal energy absorption at 35 S and maximal scope for growth at 35 and 50 S.  相似文献   

14.
The burrow microhabitat and physiology of the echiuran worm Urechis caupo at a high-density site (Elkhorn Slough, California, USA), were investigated from 1987 to 1990 to determine physical and chemical conditions, worm density and distribution, and coelomic fluid characteristics such as heme composition, pO2, pH, and coelomocyte volume. During tidal exposure, worm burrows at this site exhibited, on average, 52% air-saturated water, 11M burrow-water sulfide, 85 g/mg wet weight sediment sulfide, and salinity and osmolalities similar to those of seawater. These conditions are compared to those of another California site, Bodega Bay, which had slightly lower oxygen concentrations, but higher water and sediment-sulfide levels. A more limited comparison to a third site, Princeton Harbor, California, is included. Worms from Bodega Bay, the higher sulfide site, had greater concentrations of hematin, a non-globin heme compound contained in the coelomocytes, and exhibited a greater tolerance to sulfide in the laboratory. These data are consistent with the hypothesis that hematin is a sulfide-detoxifying agent that may enhance survival of U. caupo in the sulfide-rich mudflat environment.  相似文献   

15.
In a series of multifactorial laboratory experiments, Ulva lactuca discs were grown in an apparatus in which they were exposed simultaneously to 3 simulated current speeds (7.5, 15, 22.5 cm s-1) and a still control, and either 3 ammonium concentrations (0–10, 35–45 and 115–145 M) under ample uniform light (ca 200 E m-2 s-1) or 3 light intensities (approximately 35, 90 and 270 E m-2 s-1) with uniform surplus, ammonium. Disc growth rates were determined in each experiment as well as tissue nitrogen and carbon composition and fluxes of NH4, NO3/NO2 and PO4 in media. In a supplementary series of field experiments, U. lactuca discs were simultaneously exposed to 2 different water motion regimes in adjacent chambers at several sites characterized by widely different ammonium concentrations. In field experiments, growth rates were calculated and analyzed as a function of water motion at the various sites. The application of simulated current consistently enhanced disc growth rates in the laboratory, except at the lowest light intensity. In most cases this enhancement was fully realized at the lowest applied simulated current (7.5 cm s-1). Simulated current slightly enhanced ammonium uptake rates by U. lactuca discs, relative to rates in still water, except at the highest ammonium concentration. C:N ratios of discs generally declined with increases in simulated current, except at the highest ammonium concentration. This decline was primarily attributable to increases in per cent N and was, again, mainly realized at 7.5 cm s-1. The results suggested that simulated current compensated for N limitation, except when light was sufficiently low to become the overriding limiting factor, but that the enhancement of growth by simulated current could not be explained in terms of N metabolism alone. Field experiments showed that the higher level of water motion consistently enhanced growth at sites with comparatively low ammonium concentrations, but not at sites with moderate or high ammonium concentrations.  相似文献   

16.
Aluminium concentrations in NIST (formally NBS) Standard Reference Material Tomato Leaves and Citrus Leaves were determined by ICP-AES after acid digestion. The normal total acid attack (nitric and perchloric acids) gave very low recovery (40%) of Al in NIST tomato leaves, but not for citrus leaves. The contribution of Al from Al-rich soil particles in both tomato leaves and citrus leaves was estimated semi-quantitatively by computer-controlled EPMA. The Al held in these particles corresponded in approximate concentration to the shortfall between the acid soluble component determined in this study and the certified value. Analysis by EPMA can provide, therefore, a method of estimating Al contributed by soil contamination to plant materials. The limitations of the NIST tomato and citrus leaf reference material for the validation of methods for the determination of Al in vegetation are demonstrated.  相似文献   

17.

The combined exposure to aluminum (Al) and cadmium (Cd) causes more pronounced adverse health effects on humans. The kidneys are the main organs affected by internal exposure to Cd and Al via food and non-food items. The objective of present study was to measure the Al and Cd concentrations in cigarettes tobacco (branded and non-branded) and drinking water (domestic treated, ground and lake water) samples in southern part of Pakistan, to assess the risk due to ingestion of water and inhalation of cigarettes smoke containing high concentrations of both elements. The study population (kidney disorder and healthy) divided into two group based on consuming lake and ground water, while smoking non-branded cigarette as exposed, while drinking domestic treated water and smoking branded cigarette as non-exposed. Electrothermal atomic absorption spectrometry was used to determined Cd and Al concentrations in tobacco, drinking water and blood samples. The resulted data indicated that the levels of Al and Cd in lake and underground water were higher than the permissible limit in drinking water recommended by the World Health Organization. The biochemical parameters of exposed and referent patients, especially urinary N-acetyl-h-glucosaminidase, were used as a biomarkers of kidney disorder. Exposed kidney disorder patients have higher levels of Cd and Al than the exposed referents subjects, while difference was significant when compared to resulted data of non-exposed patients and referents (p = 0.01–0.001). The pearson correlation showed positive correlation between both toxic element concentrations in water, cigarettes versus blood samples of exposed subjects (r = 0.20–0.67 and 0.71–0.82), while lower values were observed for non-exposed subjects (r = 0.123–0.423 and 0.331–0.425), respectively.

  相似文献   

18.
When shore crabs Carcinus maenas are transferred from 11 to 38 S at 11°C, new constant levels of hemolymph freezing points and of concentrations of Na, K, Ca, and Mg in the hemolymph are accomplished within 24h. From a decrease in serum protein and in serum free amino acids and an increase in the relative amounts of individual essential free amino acids in the body fluids of whole crabs, a participation of proteolytic activities and a transport of amino acids from hemolymph to cell is deduced; the stationary concentration of total intracellular free amino acids increases up to a nearly two-fold value, compared with the concentration in crabs remaining in diluted sea water. Also, the low molecular neutral sugars increase in whole crabs after high salinity stress, reaching values of more than two-fold initial concentrations within a period of 10 days. This increase is fully accounted for by a 6.7-fold increase in trehalose levels. The processes of increasing the concentrations of low molecular organic material seem to be slower than those of establishing new osmotic pressures in the hemolymph. The oxygen consumption decreases by 30 to 45% to new constant values within 8 to 12 h after the salinity change from 11 to 38, reflecting similar kinetics as the establishment of new osmotic pressures in the hemolymph.  相似文献   

19.
Concentrations of nine inorganic elements (Na, Zn, Ca, Fe, Ni, Mn, Cu, Cd and Al) in particulate matter (PM10) in the air of an equatorial urban coastal location during 2009 were studied during summer and winter monsoon seasons using high-volume sampling techniques. Atomic absorption spectrophotometry was used to analyse the samples. The concentrations of most inorganic elements were higher during summer than winter, except for Cu and Zn. The main inorganic elements in PM10 are Na, Zn and Ca. High concentrations of Na and Ca are due to marine aerosols. Analysis of enrichment factors showed that inorganic elements are from non-crustal sources. Cluster analysis identified five clusters in the summer and six in the winter: (1) PM10–Ni, (2) Zn–Na, (3) Fe–Cu–Ca–Cd, (4) Mn and (5) Al for summer; and (1) PM10, (2) Zn, (3) Fe–Ni, (4) Cu–Ca–Na–Cd, (5) Mn and (6) Al for winter. Combining both correlation and cluster analysis, it was found that Fe–Cu–Cd was from industry/vehicle emissions, Zn was from resuspended soil, Mn was from metallurgical processes, Ni was from a nearby power plant and Al was from crustal sources. Inorganic element concentrations could be a good indicator of local sources of PM10.  相似文献   

20.
Direct individual analysis using Scanning Electron Microscopy combined with online observation was conducted to examine the S-rich particles in PM2.5 of two typical polluted haze episodes in summer and winter from 2014 to 2015 in Beijing. Four major types of S-rich particles, including secondary CaSO4 particles (mainly observed in summer), S-rich mineral particles (SRM), S-rich water droplets (SRW) and (C, O, S)-rich particles (COS) were identified.We found the different typical morphologies and element distributions of S-rich particles and considered that (C, O, S)-rich particles had two major mixing states in different seasons. On the basis of the S-rich particles’ relative abundances, S concentrations and their relationships with PM2.5 as well as the seasonal comparison, we revealed that the S-participated formation degrees of SRM and SRW would enhance with increasing PM2.5 concentration. Moreover, C-rich matter and sulfate had seasonally different but significant impacts on the formation of COS.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号