首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.  相似文献   

2.
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the appropriation doctrine of law does not appear to protect prior downstream appropriations from increasing salinity in this case.  相似文献   

3.
ABSTRACT The Colorado River Basin faces the dilemma of an increasing demand for water while presently struggling with salinity concentrations approaching critical levels for some water uses. Based upon projected development salinity concentrations are predicted to exceed 1200 mg/1 at Imperial Dam by the year 2010. Annual losses to the basin economy associated with increased salinity will exceed $50 million by the year 2010. Although methods of controlling salt discharges are relatively unrefined, certain conclusions, based upon Bayesian statistical methods, can be reached. Five basic alternatives for coping with the problem are presented and evaluated in this paper: (1) do nothing; (2) adopt arbitrary salinity standards; (3) limit development; (4) control salt discharges at a cost equal to the cost of doing nothing, or (5) minimize total costs to the basin. Total costs associated with any given alternative, or the given salinity resulting, are the sum of salinity detriments (cost to users for water of increased salinity plus economic multiplier effects) plus the cost of constructing salt discharge control works. These impacts upon basin economy and Colorado River water quality for each alternative are presented and related to questions of equity which will play a role in arriving at any long-term solution to the Basin's problem.  相似文献   

4.
ABSTRACT: The salinity of the lower South Platte River in Colorado is characterized by plotting the average annual flow, total dissolved solids, and salt mass flow against distance along the stream. The plots show that salts are being leached from the irrigated lands above Greeley and are being deposited on the irrigated lands below Greeley. The salt deposition on the lower lands will result in their salination. The plots show also that fall and winter stream flows carry most of the salt loads. These fall and winter flows are stored in off stream reservoirs for use during the irrigation season. Therefore these salts are transferred to the lower irrigated lands where they accumulate. The salt balance for these lands can be improved by permitting the fall and winter flows to leave the basin, or by providing adequate land drainage coupled with supplemental irrigation water.  相似文献   

5.
ABSTRACT: Despite potential benefits for resource planning, community water systems managers have not used seasonal climate forecasts extensively. Obstacles to forecast use include a lack of awareness of their existence, distrust of their accuracy, perceived irrelevance to management decisions, and competition from other technological innovations. In this paper, ways in which seasonal forecasts might be extended to address more directly some concerns of South Carolina community water systems managers are explored. From May 1998 through August 2002, this group experienced drought conditions that threatened water quality and supply and required restrictions on water consumption. Methods for incorporating long lead forecasts with joint probabilities of monthly temperature and precipitation to produce drought forecasts are demonstrated. When tailored to specific places, such forecasts show the likelihood of exceeding drought thresholds that would trigger water use restrictions. The methods illustrate how long lead forecasts can be extended and customized into secondary products that address issues of greater relevance to water resource managers.  相似文献   

6.
ABSTRACT: The Upper Colorado River Basin contains appreciable amounts of undeveloped fuel resources. Large quantities of oil shale, coal, and uranium have attracted recent economic and commercial interests. Development of these resources and subsequent conversion to alternative energy forms require an adequate supply of water. Water use for large scale energy development will place increasing demands on an already overstressed allocation of Colorado River water. Present water quality is at a concentration where increased salinity will result in economic detriments to holders of downstream water rights. The salt and water exchange in mining, processing, and spent fuel disposal processes has been incorporated as part of a two-level minimum cost linear programming algorithm. Mathematical simulation results provide an optimal use of Upper Colorado River water for levels of energy output such that salinity concentrations are maintained below predetermined levels.  相似文献   

7.
8.
ABSTRACT: Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.  相似文献   

9.
ABSTRACT: Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high.  相似文献   

10.
ABSTRACT: The environmental setting of the Red River of the North basin within the United States is diverse in ways that could significantly control the areal distribution and flow of water and, therefore, the distribution and concentration of constituents that affect water quality. Continental glaciers shaped a landscape of very flat lake plains near the center of the basin, and gently rolling uplands, lakes, and wetlands along the basin margins. The fertile, black, fine-grained soils and landscape are conducive to agriculture. Productive cropland covers 66 percent of the land area. The principal crops are wheat, barley, soybeans, sunflowers, corn, and hay. Pasture, forests, open water, and wetlands comprise most of the remaining land area. About one-third of the 1990 population (511,000) lives in the cities of Fargo and Grand Forks, North Dakota and Moorhead, Minnesota. The climate of the Red River of the North basin is continental and ranges from dry subhumid in the western part of the basin to subhumid in the eastern part. From its origin, the Red River of the North meanders northward for 394 miles to the Canadian border, a path that is nearly double the straight-line distance. The Red River of the North normally receives over 75 percent of its annual flow from the eastern tributaries as a result of regional patterns of precipitation, evapotranspiration, soils, and topography. Most runoff occurs in spring and early summer as a result of rains falling on melting snow or heavy rains falling on saturated soils. Lakes, prairie potholes, and wetlands are abundant in most physiographic areas outside of the Red River Valley Lake Plain. Dams, drainage ditches, and wetlands alter the residence time of water, thereby affecting the amount of sediment, biota, and dissolved constituents carried by the water. Ground water available to wells, streams, and springs primarily comes from sand and gravel aquifers near land surface or buried within 100 to 300 feet of glacial drift that mantles the entire Red River of the North basin. Water moves through the system of bedrock and glacial-drift aquifers in a regional flow system generally toward the Red River of the North and in complex local flow systems controlled by local topography. Many of the bedrock and glacial-drift aquifers are hydraulically connected to streams in the region. The total water use in 1990, about 196 million gallons per day, was mostly for public supply and irrigation. Slightly more than one half of the water used comes from ground-water sources compared to surface-water sources. Most municipalities obtain their water from ground-water sources. However, the largest cities (Fargo, Grand Forks and Moorhead) obtain most of their water from the Red River of the North. The types and relative amounts of various habitats change among the five primary ecological regions within the Red River of the North basin. Headwater tributaries are more diverse and tend to be similar to middle-reach tributaries in character rather than the lower reaches of these tributaries for the Red River of the North. Concentrations of dissolved chemical constituents in surface waters are normally low during spring runoff and after thunderstorms. The Red River of the North generally has a dissolved-solids concentration less than 600 milligrams per liter with mean values ranging from 347 milligrams per liter near the headwaters to 406 milligrams per liter at the Canadian border near Emerson, Manitoba. Calcium and magnesium are the principal cations and bicarbonate is the principal anion along most of the reach of the Red River of the North. Dissolved-solids concentrations generally are lower in the eastern tributaries than in the tributaries draining the western part of the basin. At times of low flow, when water in streams is largely from ground-water seepage, the water quality more reflects the chemistry of the glacial-drift aquifer system. Ground water in the surficial aquifers commonly is a calcium bicarbonate type with dissolved-solids concentration generally between 300 and 700 milligrams per liter. As the ground water moves down gradient, dissolved-solids concentration increases, and magnesium and sulfate are predominant ions. Water in sedimentary bedrock aquifers is predominantly sodium and chloride and is characterized by dissolved-solids concentrations in excess of 1,000 milligrams per liter. Sediment erosion by wind and water can be increased by cultivation practices and by livestock that trample streambanks. Nitrate-nitrogen concentrations also can increase locally in surficial aquifers beneath cropland that is fertilized, particularly where irrigated. Nitrogen and phosphorous in surface runoff from cropland fertilizers and nitrogen from manure can contribute nutrients to lakes, reservoirs, and streams. Some of the more persistent pesticides, such as atrazine, have been detected in the Red River of the North. Few data are available to conclusively define the presence or absence of pesticides and their break-down products in Red River of the North basin aquifers or streams. Urban runoff and treated effluent from municipalities are discharged into streams. These point discharges contain some quantity of organic compounds from storm runoff, turf-applied pesticides, and trace metals. The largest releases of treated-municipal wastes are from the population centers along the Red River of the North and its larger tributaries. Sugar-beet refining, potato processing, poultry and meat packing, and milk, cheese, and cream processing are among the major food processes from which treated wastes are released to streams, mostly in or near the Red River of the North.  相似文献   

11.
ABSTRACT: Gold was discovered in Georgia in 1829 and mined until about 1940 in the Dahionega Gold Belt of the north Goorgia Piedmont. Streams there are characterized by gravel beds and fine sandy to silty banks. Historical mining-related alluvium is clearly distinguished from prehistoric alluvium because it is contaminated with mercury (Hg), which was used by miners to amalgamate gold. Mercury concentrations in historical floodplain sediments range from 0.04 to 4.0 mg kg?1, exceeding background (0.04 mg kg1) by as much as two orders of magnitude near the core of the mining district and decreasing in the downstream direction. Low levels (≤ 0.1 mg kg1) of Hg are established within about 10–15 km from the source mines. The mercury-contaminated sediment exceeds sediment quality guidelines set by many agencies, and is a significant nonpoint source for mercury pollution. Hydraulic mining of saprolite, which began in 1868, and cutting of forests associated with mining and settlement caused unusually rapid sedimentation (1–3 cm yr?l) and floodplain aggradation in the region. After mining ceased, streams adjusted by downcutting and forming an historical-age terrace. A new floodplain is currently being formed as streams migrate lateraily and erode the mining-related sediment of the historical terrace. High magnitude floods are contained within the confines of the historical terrace, thus limiting quantities of over-bank sedimentation, causing channel bank erosion, and transmitting high sediment yields to reservoirs in the region.  相似文献   

12.
ABSTRACT: This study investigates some of the effects occurring at recreational off-road vehicle (ORV) crossings on two rivers in eastern Victoria, where many road crossings occur at low-level fords. Further, it provides a method whereby the amount of sediment redeposited downstream of a ford can be measured. Attention is drawn to the fact that sediment is contributed to the river by five major processes: the creation of wheel ruts and concentration of surface runoff, the existence of tracks and exposed surfaces, the compaction and subsequent reduction in the infiltration rate of soils leading to increased surface runoff, backwash from the vehicle, and undercutting of banks by bow wave action. The last two of these processes have not been reported previously. Sediment collection experiments in two Victorian upland rivers indicate a mean deposition rate at the stream bed of approximately 1000 g m?2 over a period of 30 days.  相似文献   

13.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

14.
ABSTRACT: The application of a water balance model in finding “solutions” to the supply/demand problem was demonstrated using the South Platte River basin as a case study. Solutions were ascertained by hand, using both “average” and “stress” supply/demand conditions, and were developed for 1980, 2000, and 2020; nonquantifiable boundary conditions were incorporated by judgement. The solution obtained for a particular set of conditions is not unique and has strong normative characteristics; thus it must be judged by various interest groups having different ethical positions. The water balance model has a tabular display format and so the “model” is merely a simple table, i.e., a “water balance table.” In this work the water balance table was displayed on an eight-foot by eight-foot color-coded magnetic board. The board provides a means to both find and display the needed supply/demand “solution.” The tabular display facilitates understanding of the systemwide solution and the formulation of value judgments. Based upon these value judgments and an initial “straw man” solution, successive negotiated solutions can be found which can minimize “conflict.”  相似文献   

15.
Acclimation to varying salinities did not affect the preferred temperature of Saratherodon melanotheron, which had a final preferred temperature of 33.5 C. However, fish acclimated to 25 C and 0, 15, and 30 o/oo salinities had lower lethal temperatures of 15, 13, and 15 C, respectively, and an upper lethal temperature of 37 C. The thermal zone of tolerance for fish acclimated in freshwater was 17-35 C, and was not dependent upon acclimation temperatures. Data suggest this species could expand its range in North America.  相似文献   

16.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

17.
ABSTRACT: Bathymetric and sedimentation surveys were conducted using a dual frequency (28/200 kHz) echo sounder system in two reservoirs (Lee Creek Reservoir and Lake Shepherd Springs) in the Ozark Plateau of northwestern Arkansas. Echo sounder survey data were merged within geographic information system (GIS) software to provide detailed visualization and analyses of current depths, pre‐impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, time averaged sediment accumulation rates, long term average annual sediment flux, and water storage capacity. Calculated long term average sediment accumulation rates were used to model sediment infilling and projected lifetimes of each reservoir. Results from echo sounder surveys and GIS analyses suggest that the Lee Creek Reservoir has a projected lifetime of approximately 500 years compared to a projected lifetime for Lake Shepherd Springs of approximately 3,000 years. Estimated differences in projected lifetimes of these reservoirs reflected differences in initial reservoir volume and long term average annual sediment flux from the respective watersheds related to watershed area, physiography, land cover, and land use. The universal soil loss equation (USLE) model generated sediment fluxes an order of magnitude larger from the watersheds of both reservoirs compared to the geophysical data estimates. This study demonstrated the utility of merging geophysical survey (echo sounder) data within a GIS as an aid to understanding patterns of reservoir sedimentation. These data and analyses also provide a baseline relevant to understanding sedimentation processes and are necessary for development of long term management plans for these reservoirs and their watersheds.  相似文献   

18.
ABSTRACT: The proposed removal of Ballville Dam was assessed by (1) using a new Geographic Information Systems (GIS) based method for calculating reservoir sediment storage, (2) evaluating sediment properties and contamination from core data, and (3) assessing downstream impacts from sediment routing calculations. A 1903 (pre‐dam) map was manipulated using GIS to recreate the reservoir bathymetry at time of dam construction and used in combination with a detailed 1993 bathymetric survey to calculate sediment volumes and thickness. Reservoir sediment properties and geochemistry were determined from 14 sediment vibracores. Annual sedimentation rates varied from 1.7 to 4.3 g/cm2/yr based on Cesium‐137 (137Cs) and Lead‐210 (210Pb) geochronology and dated flood layers. The pore fluid geochemistry (Ba, Co, Cu, Mn) of four cores showed surficial enrichments in Cu, while Co and Mn show secondary peaks within the sediments. GIS calculations showed that a designed channel through the former reservoir able to accommodate the 10 percent Probable Maximum Flood (PMF) would require removing approximately 0.35 million m3 of sediment (27 percent of the reservoir fill), either by dredging at a cost of up to $6.3 million or by releasing fine grained sediment downstream. A sediment routing model was applied for the critical 6 km downstream using four cross sections. The sediment routing model predicts that, for flows exceeding minimum Mean Daily Flow (1924 to 1998 data), greater than 90 percent of this sediment would be transported through downstream reaches into Lake Erie (Sandusky Bay).  相似文献   

19.
ABSTRACT: The South Fork of Long Island, New York is an area which relies entirely on ground water for water supply. Most of the water which is pumped is artifically recharged, without treatment, via cesspools. The natural quality of the ground water is very high. Some areas show increasing nitrate in the ground water. This comes from both cesspools and agricultural fertilizer. Saline water intrusion is a potential problem in coastal areas. High ammonia in surface ponds may result in eutrophication.  相似文献   

20.
ABSTRACT: The final preferred temperature of Oreochromis mossambicus acclimated to freshwater was 32.2 C, which was significantly (P ≤ 0.05) lower than final preferred temperatures of fish acclimated at 15 o/oo and 30 o/oo salinity. The thermal tolerance zone of Oreochromis mossambicug ranged between 15–37 C and was not affected by acclimation to different salinity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号