首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Vegetative filter strips (VFS) are commonly used best management practices for removing contaminants from runoff. Additional research is warranted to determine their efficiency and the most appropriate metrics for predicting fecal bacteria reductions. The objective of this research was to determine VFS effectiveness in removing from runoff relative to inflow rate, infiltration capacity, and flow concentration. This research also investigated the presence of in runoff from clean water runon after diluted manure runon events. A laboratory-scale VFS soil box (200 cm long, 100 cm wide, 7.5% slope) was packed with a sandy loam soil. Ten constant-flow VFS experiments were conducted with and without vegetation (8-10 cm ryegrass [ L.]) at low (20-40 cm s), medium (40-60 cm s), and high (85-120 cm s) flow rates and for a full (100 cm) or concentrated (40 cm) VFS flow width to simulate a channelizing flow condition. Two runon events were investigated for each experimental condition: (i) diluted liquid swine manure runon and (ii) clean water runon 48 h afterward. was used as an indicator of fecal contamination and was quantified by the most probable number (MPN) technique. No concentration reductions were observed based on peak outflow concentrations, and only small concentration reductions were observed based on outflow event mean concentrations. The mass reductions ranged from 22 to 71% and were strongly correlated to infiltration or runoff reduction ( = 0.88), which was dependent on the degree of flow concentration. Little to no effect of sedimentation on transport was observed, hypothesized to be due to minimum attachment to sediment particles because the bacteria originated from manure sources. Therefore, the design of VFS for bacteria removal should be based on the infiltration capacity in the VFS and should prevent concentrated flow, which limits total infiltration. The event mean concentrations in clean water runon experiments were between 10 and 100 MPN per 100 mL; therefore, under these conditions, VFS served as a source of residual from previous runon events.  相似文献   

2.
ABSTRACT: The purpose of this paper is to show through the use of numerical examples that modern infiltration theory can be used in everyday hydrologic practice. The actual use of four methods of calculation of infiltration rates and of excess rainfall rates is demonstrated for the case when simultaneous data of rainfall and stream flow are available for a watershed. The four methods are: (1) the well known Π-index method, (2) the traditional Horton's infiltration capacity formula, (3) the less traditional Green and Ampt infiltration capacity formula, and (4) a ponding time approach. It is recommended that hydrologists become at least familiar with the numerical procedures involved in the ponding time and postponding infiltration approach. This approach, though not flawless, should be preferred to the other three methods if use of the other three is at all considered.  相似文献   

3.
ABSTRACT: Physically-based models are extensively used to simulate the infiltration process under varied field conditions. Most models are based on the deterministic nature of input parameters related to the flow process (such as hydraulic conductivity). These models yield poor predictions of infiltration rates because they do not include the field-scale variations of flow parameters. The paper presents an approach for integrating the field-scale variability of hydraulic conductivity with an infiltration model to simulate infiltration under the rainfall conditions. A model describing the spatial structure of hydraulic conductivity has been developed using stochastic techniques. The stochastic structure of hydraulic conductivity was then incorporated in the Green-Ampt and Mein-Larson infiltration model. The model outputs on the instantaneous infiltration rates and cumulative infiltration were evaluated using the field infiltration data measured under simulated rainfall conditions. The results show that the combined model is capable of rep. resenting the instantaneous infiltration rates and cumulative infiltration of the study soils. The model may, therefore, be used to simulate the rainfall infiltration process for spatially-variable soils under the field conditions.  相似文献   

4.
ABSTRACT: A successful procedure for measuring steady-state infiltration rates at remote locations is described. The equipment for the simultaneous experiments is of simple design, inexpensive, and rugged. A total of 247 steady-state infiltration measurements were made across a small rangeland catchment using the procedure as described. The reason for the measurements was to characterize the spatial variability of infiltration across the catchment. The limiting factor for the multiple-ring system as employed in this study was a sufficient water supply to conduct the experiments to completion.  相似文献   

5.
ABSTRACT: Two infiltration models, called VVSIM (variable variance stochastic infiltration model) and EVVSIM (enhanced variable variance stochastic infiltration model), are developed in this study. A distributed parameter infiltration model can estimate the amount of infiltration over a field area by computing the infiltration over zones of the field area. Hydraulic conductivity is the most important parameter determining infiltration in simulations by infiltration models. The performance of an infiltration model depends on how well the model accommodates the complicated spatial distribution of hydraulic conductivity. The two proposed models include the effects of spatial correlation of the conductivity distribution. Virtual conductivity fields are generated using the turning bands method. Monte Carlo simulations show that the proposed models give infiltration estimates more accurate than those obtained by the other models employed.  相似文献   

6.
ABSTRACT: The hydrologic character and response of disturbed land is controlled, to a large degree, by soil infiltration characteristics. Reconstructed soils on surface mines (minesoils) of different age (1 to 4 years old) are used to investigate infiltration rates on disturbed landscapes. The data consist of soil/surface properties and runoff volumes fit to the Horton infiltration equation. Infiltration rates on newly reclaimed minesoils are an order of magnitude lower than adjacent, undisturbed soil. Few significant correlations exist between soil/surface properties and infiltration parameters for newly reclaimed soils. However, the correlation between infiltration and minesoil characteristics increases with soil age. Multiple regressions are used to explore relationships between infiltration parameters and soil/surface properties for each soil age. Regression models of 30-min infiltration volume and the steady-state rate consistently include the percent silt and clay, slope, bulk density, and vegetation. Mean infiltration volumes at different mines are equal in the first year following reclamation, but become significantly different with surface age. The magnitude of the increase is controlled by the soil texture, vegetation, slope, and bulk density. Soil characteristics are determined ultimately by the overburden lithology and its effect on mineralogy and grain size during physical redistribution of soil particles and initial weathering.  相似文献   

7.
ABSTRACT: Irrigation reduces infiltration rates for subsequent irrigations or rains, thus decreasing the efficiency of water use and impacting watersheds in agricultural areas. Reduced infiltration causes greater runoff with its accompanying erosion, pollution, and sedimentation. Small rates of polyacrylamide (PAM) improve infiltration and reduce erosion on irrigated fields. The effects of PAM on infiltration of rainwater, the longevity of the effects of various rates of PAM, and the effects of repeated or intermittent PAM applications are not understood. This study measured the effects of four PAM application rates (0, 10, 25, and 40 ppm) on the subsequent infiltration of wastewater or simulated rainwater for seven weeks following the initial treatments. Also, effects of repeated and intermittent PAM applications on infiltration were determined. Hydraulic conductivity was determined for each soil column using the falling head method. Two soil types from the coastal plain of south Texas were tested — a soil high in clay (Victoria) and a sandy loam (Willacy). Effects of PAM rates were significant, but effects of water type were not (P > 0.05). Benefits from single PAM applications disappeared within two weeks. Water enriched with PAM is so viscous and infiltrates so slowly that applying PAM in every irrigation event may not be feasible. However, repeating PAM applications every two weeks maintained high infiltration rates on the alternate weeks. This intermittent application of PAM may be a practical approach for improving infiltration rates on irrigated lands.  相似文献   

8.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

9.
ABSTRACT: Techniques for predicting the hydrologic effects of grazing schemes have heretofore been unavailable. The available literature on grazing intensity influences on infiltration rates is used as a basis for a model of infiltration behavior in response to grazing systems. Background, development, cautions, and an example are given.  相似文献   

10.
ABSTRACT: The SCS infiltration model was applied to the Ralston Creek watershed in eastern Iowa. The criteria to determine the various model parameters were revised to obtain a better agreement between the observed and computed total runoffs. A procedure to calibrate the infiltration model is presented. The infiltration model was used in conjunction with an overland flow model to develop flood hydrographs. The results indicate that SCS infiltration model adequately describe the distribution of losses.  相似文献   

11.
ABSTRACT: Little quantitative site-specific infiltration, runoff and sediment transport data for Tahoe Basin soils under varying storm events or stage of development are available. Modular (Ml), F-type (M2), Impact nozzle (M3), and Impact-Fan nozzle (M4) rainfall simulators were evaluated as to their practicality and ability to characterize infiltration for the Cagwin Soil Series within the Tahoe Basin. Three slope (0–15,15–30, >30%) and four plot conditions (natural with duff [P1], natural without duff [P2], disturbed without duff [P3], and disturbed with duff [P4]) were studied. The measured data were incorporated into a modified Philip's infiltration model and multiple non-linear regression analyses were used to examine relationships between method, slope, plot condition, and infiltration characteristics.t Simulation methods Ml and M4 produced statistically similar (P=0.01) infiltration data, as did M2 and M3 which produced lower infiltration rates. All were found suitable for use in Sierra Nevada watersheds. Ml was considered most practical. Slope had negligible effect on infiltration. The plot condition was found to significantly influence infiltration, and the effect of each plot condition was significantly different. Final infiltration rates ranged from 4.7 to 6.2 cm/hr. Thus, the Cagwin soil demonstrated moderate to high infiltration rates even when exposed to extreme storm conditions (8–10 cm/hr).  相似文献   

12.
ABSTRACT: A dynamic programming model is presented for planning the optimal capacity expansion sequence of waste water treatment plants servicing sewerage systems with infiltration/inflow. The model employs a nonlinear deterministic demand function for waste water treatment plant capacity. Model output provides the optimal timing, size, and sequence for treatment plant capacity expansion projects and infiltration/inflow removal projects. An example problem is presented and solved.  相似文献   

13.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

14.
ABSTRACT: Development type has emerged as an important focal point for addressing a wide range of social, cultural, and environmental concerns related to urban growth. Low impact development techniques that rely heavily on infiltration practices are increasingly being used to manage storm water. In this study, four development types (conventional curvilinear, urban cluster, coving, and new urbanism) were modeled both with and without infiltration practices to determine their relative effects on urban runoff. Modeling was performed with a modified version of the Natural Resources Conservation Service (NRCS) runoff method that enables evaluation of infiltration practices. Model results indicate that urban cluster developments produce the smallest volume of runoff due to the large portion of land kept in a natural condition. Infiltration practices are most effective for small storms and in developments with Hydrologic Group A soils. Significant reductions in runoff can be achieved in all four development types if infiltration practices treat many impervious surfaces. As more infiltration practices are implemented, the differences in runoff among development types diminish. With a strategic combination of site layout and infiltration design, any development type can reduce hydrologic impacts, allowing developers to consider other factors, such as convenience, marketability, community needs, and aesthetics.  相似文献   

15.
ABSTRACT: An envelope of steady-state surface runoff response for a hilislope is established in terms of the probability distribution and spatial arrangement of individual point infiltration capacities and the rainfall intensity. Minimum overland flow is shown to occur when point infiltration capacities are ordered with the highest at the slope bottom, while maximum overland flow occurs when the highest point capacities are at the top of the slope. Equations for envelope curves are developed for both continuous distributions and discretely sampled data; examples for each case are given. Use of the analysis as a rainfall-runoff model is also discussed.  相似文献   

16.
Concrete grinding residue (CGR) is a slurry byproduct created by concrete pavement maintenance operations. Disposal of CGR slurry is presently regulated on the basis of very minimal information. The least immediate expense is incurred by spreading CGR slurry directly on vegetated roadway ditches and embankments. The direct disposal impacts to environmental quality in terms of soil physical or chemical properties are not known. Five CGR materials from widely dispersed sites in the United States were analyzed for particle size distribution and evaluated with a suite of USEPA physical and chemical analyses. Values found for the parameters examined are not considered harmful. An infiltration column study was also conducted in which two CGRs were mixed at 8 and 25% by weight and also surface applied 2.5 mm deep with two contrasting (relatively fine and coarse textured) soils. With the finer soil, statistically (p < 0.05) significant decrease in infiltration time (increased infiltration rate) was associated with the 25% and surface-applied CGR treatments, compared with the untreated control soil. The results indicate that excessive application of CGR may increase water infiltration into soil in the short-term. This should be kept in mind, but does not appear to be generally detrimental.  相似文献   

17.
ABSTRACT: The objective of this study was to investigate the use of Green and Ampt infiltration equation parameters (determined by least squares fitting of field infiltration data or predicted from soil texture properties) to characterize infiltration on spatially varying rangeland sites. It was found that a least squares regression approach reduces the physically based parameters in the Green and Ampt to empirical coefficients since negative coefficients are obtained, particularly on plots with low infiltration rates. Green and Ampt parameters predicted from soil texture data describe infiltration rates less than 3 cm/hr. The applicability of these Green and Ampt parameters appears limited to sites with lower infiltration rates. Results indicate that soil texture predictive triangles, developed to describe infiltration on agricultural soils, need revision to adequately describe infiltration patterns on rangelands.  相似文献   

18.
ABSTRACT: Effects of long-term prescribed burning on infiltration and interrill erosion were assessed on two longleaf pine-bluestem sites in Louisiana. Treatments represented biennially-applied winter, spring, or summer burning on an upland sandy loam site for 20 years; and annual winter or spring, and biennial winter or spring burns on a bottomland silt loam site for 10 years, with unburned controls. Immediate effects of burning were a reduction in surface cover, exposing soil to raindrop impact. Burning the sandy loam site increased interrill erosion after winter and spring treatments, but produced no immediate changes in infiltration capacity or time to runoff irrespective of treatment season. Rapid recovery of under-story vegetation mitigated soil exposure. Biennial burning did not increase interrill erosion, or reduce infiltration capacity and time to runoff on the sandy loam site after 20 years. A complete herbaceous understory covered the silt loam site two years after treatment. Interrill erosion was not significantly increased, or infiltration capacity and time to runoff decreased on burning treatments than unburned controls on the silt loam site. Litter biomass was important in predicting interrill erosion. No surface cover condition could be linked to variability in infiltration capacity. This study provides evidence for the resiliency of a longleaf pine-bluestem association to prescribed burning.  相似文献   

19.
Abstract: A pervious concrete infiltration basin was installed on the campus of Villanova University in August 2002. A study was undertaken to determine what contaminants, if any, were introduced to the soils underlying the site as a result of this best management practice (BMP). The average infiltration rate at the site is approximately 10?4 cm/s. The drainage area (5,208 m2) consists of grassy surfaces (36%), standard concrete/asphalt (30%), and roof surfaces (30%) that directly connect to the infiltration beds via downspouts and storm sewers. Composite samples of infiltrated stormwater were collected from the vadose zone using soil moisture suction devices. Discrete samples were collected from a port within an infiltration bed and a downspout from a roof surface. Samples from 17 storms were analyzed for pH, conductivity, and concentrations of suspended solids, dissolved solids, chloride, copper, and total nitrogen. Copper and chloride were the two constituents of concern at this site. Copper was introduced to the system from the roof, while chloride was introduced from deicing practices. Copper was not found in porewater beneath 0.3 m and the chloride was not significant enough to impact the ground water. This research indicates that with proper siting, an infiltration BMP will not adversely impact the ground water.  相似文献   

20.
采用人工模拟降雨和室内分析相结合的方法,研究了黄土区不同耕作措施对降雨入渗的影响。结果表明:①不同耕作管理措施对降雨入渗的影响效用不同,在相同雨强和坡度下,降雨入渗速率表现为:耙耱地〉人工掏挖〉直线坡,在中小雨强和较短滞后情况下,这种情况表现更为显著;②不同耕作管理措施对降雨产流的影响效用不同,在相同雨强和坡度下,产流滞后表现为:耙耱地〉人工掏挖〉直线坡,在中小雨强和较短滞后情况下,这种情况表现更为显著;③根据水量平衡原理,得出了不同耕作管理措施不同坡度下入渗及产流滞后随雨强的变化关系式。上述结果为黄土高原坡耕地水土流失的治理和管理,提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号