首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272microgm(-2)d(-1) MCB and 71microgm(-2)d(-1) DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream.  相似文献   

2.
Mineralogical compositions and their spatial distributions are important initial conditions for reactive transport modeling. However, popular Kd-based "reactive" transport models only require contaminant concentrations in the pore fluids as initial conditions, and minerals implicitly represent infinite sources and sinks in these models. That situation results in a general neglect of mineralogical characterization in site investigations. This study uses a coupled multi-component reactive mass transport model to predict the natural attenuation of a ground water plume at a uranium mill tailings site in western USA. Numerous ground water geochemistry data are available at this site, but mineralogical data are sketchy. Even given the well-defined pore fluid chemistry, variations of secondary mineral species and mineral abundances in the aquifer resulted in significantly different modeling outcomes. Results show that the amount of calcite in the aquifer determines the distances of plume migration. The possible presence of jurbanite, an aluminum sulfate phase, can store acidity temporarily but cause more severe contamination on a later date. The surfaces of iron oxyhydroxides can store significant amounts of sulfate and protons and serve as a second source for prolonged contamination. These simulations under field conditions illustrate that mineralogical compositions are an essential requirement for accurate prediction of contaminant fate and transport.  相似文献   

3.
Sorption equilibria and rates were characterized for a matrix of four aquifer sands and two slightly to moderately hydrophobic organic solutes (nitrobenzene and lindane), and the effects of sorption on the behavior of these solutes in saturated systems of the soils were determined. Experimental data were used to test and evaluate a variety of mathematical models for predicting contaminant fate and transport in groundwater systems.Observed equilibrium relationships between soil and solution phase solute concentrations were found to be described best by the nonlinear Freundlich isotherm model. It was further determined that the sorption process in the systems tested is rate controlled, requiring several days to approach equilibrium in completely mixed batch reactors. Subsequent modeling of solute transport in continuous flow soil column reactors was found to be most successful when rate-controlled models were used, the best results were obtained with a dual-resistance model incorporating the coupled mass transport steps of boundary-layer and intraparticle diffusion.  相似文献   

4.

Background

A three-dimensional groundwater flow model was used to evaluate the groundwater potential and assess the effects of groundwater withdrawal on the regional water level and flow direction in the central Beijing area. A program of groundwater modeling aimed at estimating current contaminant fluxes to the central area and site streams via groundwater was developed.

Results and discussion

The conceptual model developed for the site attempted to incorporate a complex stratigraphic profile in which groundwater flow and contaminant transport is strongly controlled by a shallow aquifer. Here, a conceptual model for groundwater flow and contaminant transport in central Beijing is presented.

Conclusion

Model simulations indicated that a sharp drop in the hydraulic head occurs at the center of the model area, which generates a cone of depression and a continuous decline of head with respect to time as a result of heavy groundwater abstraction.  相似文献   

5.
Numerical experiments of non-reactive and reactive transport were carried out to quantify the influence of a seasonally varying, transient flow field on transport and natural attenuation at a hydrocarbon-contaminated field site. Different numerical schemes for solving advective transport were compared to assess their capability to model low transversal dispersivities in transient flow fields. For the field site, it is shown that vertical plume spreading is largely inhibited, particularly if sorption is taken into account. For the reactive simulations, a biodegradation reaction module for the geochemical transport model PHT3D was developed. Results of the reactive transport simulations show that under the site-specific conditions the temporal variations in groundwater flow do, to a modest extent, affect average biodegradation rates and average total (dissolved) contaminant mass in the aquifer. The model simulations demonstrate that the seasonal variability in groundwater flow only results in significantly enhanced biodegradation rates when a differential sorption of electron donor (toluene) and electron acceptor (sulfate) is assumed.  相似文献   

6.
Wang C  Feng Y  Zhao S  Li BL 《Chemosphere》2012,88(1):69-76
A one-dimensional dynamic contaminant fate model, coupling kinematic wave flow option with advection-dispersion-reaction equation, has been applied to predict Nitrobenzene pollution emergency in Songhua River, China that occurred on November 13, 2005. The model includes kinetic processes including volatilization, photolysis and biodegradation, and diffusive mass exchange between water column and sediment layer as a function of particles settling and resuspension. Four kinds of quantitative statistical tests, namely Nash-Sutcliffe efficiency, percent bias, ratio of root-mean-square to the standard deviation of monitoring data and Theil’s inequality coefficient, are adopted to evaluate model performance. The results generally show that the modeled and detected concentrations exhibit good consistency. Flow velocity in the river is most sensitive parameter to Nitrobenzene concentration in water column based on sensitivity analysis of input parameters. It indicates flow velocity has important impact on both distribution and variance of contaminant concentration. The model performs satisfactory for prediction of organic pollutant fate in Songhua River, with the ability to supply necessary information for pollution event control and early warning, which could be applied to similar long natural rivers.  相似文献   

7.
Phytoremediation has the potential to enhance clean up of land contaminated by various pollutants. A mathematical model that includes a two-fluid phase flow model of water flow as well as a two-region soil model of contaminant reactions was developed and applied to various bioremediation scenarios in the unsaturated zone, especially to plant-aided bioremediation. To investigate model behavior and determine the main parameters and mechanisms that affect bioremediation in unplanted and planted soils, numerical simulations of theoretical scenarios were conducted before applying the model to field data. It is observed from the results that parameters affecting the contaminant concentration in the water phase, such as aqueous solubility, the octanol-water partition coefficient, and organic carbon content of the soil controlled the contaminant fate in the vadose zone. Simulation using the developed model also characterized the fate and transport of the contaminants both in planted and unplanted soils satisfactorily for field applications. Although phytoremediation has the potential for remediation of contaminated soils, results from both modeling and field studies suggested that plants may not always enhance the remediation efficiency when the soil already has a high microbial concentration, when the contaminant bioavailability is low, or when the overall reaction is mass transfer-limited. Therefore, other steps to increase contaminant bioavailability are needed in phytoremediation applications; natural purification mechanisms such as aging, volatilization, and natural bioremediation should be considered to maximize the plant effect and minimize the cost.  相似文献   

8.
Nonideal transport of contaminants in porous media has often been observed in laboratory characterization studies. It has long been recognized that multiple processes associated with both physical and chemical factors can contribute to this nonideal transport behavior. To fully understand system behavior, it is important to determine the relative contributions of these multiple factors when conducting contaminant transport and fate studies. In this study, the relative contribution of physical-heterogeneity-related processes versus those of nonlinear, rate-limited sorption/desorption to the observed nonideal transport of trichloroethene in an undisturbed aquifer core was determined through a series of miscible-displacement experiments. The results of experiments conducted using the undisturbed core, collected from a Superfund site in Tucson, AZ, were compared to those obtained from experiments conducted using the same aquifer material packed homogeneously. The results indicate that both physical and chemical factors, specifically preferential flow and associated rate-limited diffusive mass-transfer and rate-limited sorption/desorption, respectively, contributed to the nonideal behavior observed for trichloroethene transport in the undisturbed core. A successful prediction of trichloroethene transport in the undisturbed core was made employing a mathematical model incorporating multiple sources of nonideal transport, using independently determined model parameters to account for the multiple factors contributing to the nonideal transport behavior. The simulation results indicate that local-scale physical heterogeneity controlled the nonideal transport behavior of trichloroethene in the undisturbed core, and that nonlinear, rate-limited sorption/desorption were of secondary importance.  相似文献   

9.
Vapor-phase transport of organic pollutants is one of the important pathways in the distribution and attenuation of volatile organic compounds in the vadose zone. In this study, the impact of vapor-phase partitioning and of the physical-chemical properties of organic pollutants on vapor-phase transport was assessed. An experimentally derived relationship to predict vapor sorption for a variety of soil types under varying soil moisture conditions was incorporated into the two-dimensional finite-element model, Vocwaste. The revised model was then used to simulate the transport of volatile organics. Vapor-phase partitioning in the model accounted for vapor uptake by sorption onto moist mineral surfaces as well as sorption at the liquid-solid interface and dissolution into soil water. Under dry conditions, vapor-phase sorption of volatile organic pollutants was shown to have a retarding effect on transport of organic vapors. However, for shallow, contaminated soils, volatilization was controlled by vapor diffusion, even under dry conditions where vapor-phase sorption was high. The influence of Henry's law constant and of the aqueous-phase (solid-liquid) partition coefficient for volatile organic pollutants was considered in the simulations. Volatilization of organic vapors was shown to be favored for contaminants with high Henry's law constants and low aqueous-phase partitioning coefficients. Because of the interdependence of these two physical-chemical properties, individual properties of the contaminant should not be considered in isolation in the evaluation of vapor transport.  相似文献   

10.
Radioactive fall-out from the damaged nuclear power station at Chernobyl (USSR) has been measured in May 1986 in the River Glatt (Zürich, Switzerland) and in a shallow groundwater stream. This aquifer is hydraulically connected to the river and recharged by river water. Ruthenium-103, I-131, Te-132, Cs-134 and Cs-137 were measured several times using gamma-ray spectroscopy. By filtration through 0.45 μm, 0.2 μm and 0.05 μm filters the radionuclides were partitioned between solution (filtrate < 0.05 μm) and particles/colloids.In the river, the main radioactivity for all the investigated nuclides was found in the water passing the 0.05 μm filter. Among the particulates the highest radioactivity was detected in the fraction > 0.45 μm, the two smaller sizes contributing only little.In the water infiltrating into the groundwater Ru-103, I-131 and Te-132 were found almost exclusively in the filtrate (< 0.05 μm). No Cs-134, 137 was detected in this fraction indicating complete sorption on the aquifer material during infiltration. Only a very small radioactivity was found on colloids > 0.05 μm suggesting their retention by the heterogeneous glaciofluvial outwash deposits (stones, gravel, sand, clays).  相似文献   

11.
Hydraulic conductivity and sorption coefficients for chlorinated hydrocarbons (chloroform, carbon tetrachloride and tetrachloroethylene) were evaluated for 216 sediment samples collected across a 15 m transect and a 21 m depth interval in a contaminated aquifer near Schoolcraft, Michigan. Relationships between hydraulic conductivity, linear sorption partition coefficients, grain size classes, and spatial location were investigated using linear regression analysis and geostatistical techniques. Clear evidence of layering was found in sorption properties, hydraulic conductivity and grain sizes. Conductivity correlated well with grain size, as expected, but sorption varied inversely with grain size, contrary to some previous reports. No significant correlation was found between sorption properties and hydraulic conductivity. This is likely due to the unexpected presence of small amounts of highly sorptive coal-like solids, which dominate the sorption behavior but have little effect on conductivity. The results demonstrate that recent findings regarding the high sorption capacity of coal materials found in soils can exert a controlling influence on contaminant transport. Designers of in situ remediation systems should be cautioned that 1) it is not reasonable to assume that sorption capacity and hydraulic conductivity are related, 2) sorption capacity and hydraulic conductivity are critical measurements for contaminant site characterization and subsequent transport modeling, 3) estimating sorption capacity from organic carbon measurement may lead to greater errors than performing sorption isotherms, and 4) it is more important to characterize vertical heterogeneity rather than horizontal heterogeneity because both sorption and hydraulic conductivity are correlated across longer distances in the horizontal plane.  相似文献   

12.
The initial step in the analysis of contaminant transport in fractured rock requires the consideration of groundwater velocity. Practical methods for estimating the average linear groundwater velocity (vˉ) in fractured rock require determination of hydraulic apertures which are commonly calculated by applying the cubic law using transmissivity (T) values and the number of hydraulically active fractures in the test interval. High-resolution, constant-head step injection testing of cored boreholes in a 100 m thick fractured dolostone aquifer was conducted using inflatable packers to isolate specific test intervals from the rest of the borehole. The steps in each test interval were gradually increased from very low to much higher injection rates. At smaller injection rates, the flow rate vs. applied pressure graph projects through the origin and indicates Darcian flow; non Darcian flow is evident at higher injection rates. Non-Darcian flow results in significantly lower calculated T values, which translates to smaller hydraulic aperture values. Further error in the calculated hydraulic aperture stems from uncertainty in the number of hydraulically active fractures in each test interval. This estimate can be inferred from borehole image and core logs, however, all of the fractures identified are not necessarily hydraulically active. This study proposes a method based on Reynolds number calculations aimed at improving confidence in the selection of the number of active fractures in each test interval.  相似文献   

13.
A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients.In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication.This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic contaminant (Phenanthrene) with regard to three lithocomponents exhibiting different sorptive properties. In particular, it is shown that breakthrough curves (BTCs) for lithologically nonuniform media cannot be obtained via simple arithmetic averaging of breakthrough curves for lithologically uniform media. In addition, as no analytical solutions are available for model validation purposes, simulation results are compared to measurements from lab-scale column experiments. The model results indicate that the new code can be regarded as a valuable tool for predicting long-term contaminant uptake or release, which may last for several hundreds of years for some lithocomponents. In particular, breakthrough curves simulated by pure forward modelling reproduce experimental data much better than a calibrated standard first-order kinetics reactive transport model, thus indicating that the new approach is of high quality and may be advantageously used for supporting the design of remediation strategies at contaminated sites where some lithocomponents and/or grain size classes may provide a long-term pollutant source.  相似文献   

14.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

15.
Colloid-facilitated transport has been recognized as a potentially important and overlooked contaminant transport process. In particular, it has been observed that conventional two phase sorption models are often unable to explain transport of highly sorbing compounds in the subsurface appropriately in the presence of colloids. In this study a one-dimensional model for colloid-facilitated transport of chemicals in unsaturated porous media is developed. The model has parts for simulating coupled flow, and colloid transport and dissolved and colloidal contaminant transport. Richards' equation is solved to model unsaturated flow, and the effect of colloid entrapment and release on porosity and hydraulic conductivity of the porous media is incorporated into the model. Both random sequential adsorption and Langmuir approaches have been implemented in the model in order to incorporate the effect of surface jamming. The concept of entrapment of colloids into the air-water interface is used for taking into account the effect of retardation caused due to existence of the air phase. A non-equilibrium sorption approach with options of linear and Langmuir sorption assumptions are implemented that can represent the competition and site saturation effects on sorption of multiple compounds both to the solid matrix and to the colloidal particles. Several demonstration calculations are performed and the conditions in which the non-equilibrium model can be approximated by an equilibrium model are also studied.  相似文献   

16.
A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.  相似文献   

17.
A field study of triclosan loss rates in river water (Cibolo Creek, TX)   总被引:1,自引:0,他引:1  
Triclosan (TCS) is an anti-microbial agent used in down-the-drain consumer products. Following sewage treatment some of the triclosan will enter receiving waters. This study was designed to determine the die-away rate of triclosan released into a river as part of the sewage treatment plant effluent matrix. The study was conducted in Cibolo Creek, a moderate sized stream (discharge approximately 0.1 m(3)s(-1)) located in South Central Texas. Triclosan was analyzed from samples collected upstream of the sewage treatment plant, the sewage treatment plant effluent, and the river downstream from the effluent discharge. The first-order loss rate of parent triclosan from the water column was calculated from measured data (0.06 h(-1)) and this rate corresponded to a 76% reduction in triclosan over an 8 km river reach below the discharge. Mathematical modeling indicated that sorption and settling accounted for approximately 19% of total triclosan loss over 8 km. When removing sorption and settling, the remaining amount of triclosan had an estimated first-order loss rate of 0.25 h(-1). This loss rate was presumably due to other processes such as biodegradation and photolysis. These data show that loss of parent triclosan from the water column is rapid. Additional data are needed to fully document loss mechanisms.  相似文献   

18.
The enhanced solubility of petroleum-derived compounds in humic acid solutions is the basis for a new groundwater remediation technology. In this unique pilot-scale test, a stationary contaminant source consisting of diesel fuel was placed below the water table in a model sand aquifer (1.2 x 5.5 x 1.8-m deep) and flushed with water at a flow rate of 2 cm/h over 5 years. At 51 days, laboratory grade humic acid was added to the water and maintained at a level of approximately 0.8 g/l. The addition of humic acid had only a small impact on the aqueous transport of the BTEX components, which were rapidly dissolved from the diesel, but had a large effect on the flushing of PAHs, including methylated naphthalenes (MNs). Binding to aqueous humic acid enhanced the solubilization of MNs two- to tenfold. During aqueous transport, biodegradation of the BTEX and PAHs occurred, limiting the lateral and longitudinal extent of the diesel contaminant plume in the model aquifer. It appears that through enhanced solubilization, the overall biodegradation rate of the MNs was increased. As the various MNs were depleted from the diesel source, the MN plume shrank and then disappeared.  相似文献   

19.
Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg2+ to Hg0 was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg2+ with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg2+ sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.  相似文献   

20.
Juhna T  Klavins M  Eglite L 《Chemosphere》2003,51(9):861-868
Experiments in batch equilibrium system were carried out to evaluate the importance of physical and chemical factors determining the sorption efficiency of humic substances (HS) on aquifer material, which has been used for artificial recharge of groundwater (ARG) in drinking water production. Results showed that an increase of the amount of clay in the aquifer material and a decrease of pH in water increased the sorption efficiency. The sorption of higher molecular weight, more hydrophobic and aromatic HS (Aldrich and forest soil humic acids) were greater than the sorption of acidic HS (river fulvic acids), either on the aquifer material or to its representative sorbing phases, clay and organic matter. The sorption on the aquifer material was largely due to physical sorption (hydrophobic attractions). This study showed the importance of HS composition on their removal during ARG and contributed to an understanding of the HS sorption mechanisms in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号