首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
2021年在天津市不同功能区共设置4个点位同步采集细颗粒物(PM2.5)样品,测定了其中8种碳质亚组分的含量.结果表明,采样期间各点位ρ[有机碳(OC)]为3.7~4.4 μg·m-3,ρ[元素碳(EC)]为1.6~1.7 μg·m-3,OC浓度在中心城区最高,EC浓度差别较小.采用最小比值法对二次有机碳(SOC)进行估算,结果表明环城区二次污染较为突出,SOC占OC的比例达48.8%.各功能区碳质亚组分间的相关性强弱呈现出外围区>中心城区>环城区的特征,均表现出EC1与OC2和EC1与OC4相关性最强.正定矩阵因子(PMF)来源解析结果显示,道路扬尘源(9.7%~23.5%)、燃煤源(10.2%~13.3%)、柴油车尾气(12.6%~20.2%)和汽油车尾气(18.9%~38.8%)是天津市PM2.5中碳组分的主要来源.不同功能区碳组分污染源存在差异,中心城区和外围区主要受汽油车尾气影响;环城区受二次污染和柴油车尾气的影响更为突出.  相似文献   

2.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

3.
为了明确天津市区环境受体PM_(2.5)中碳组分的污染特征及来源,本研究分别于2016年2月(冬季)和8月(夏季)在天津市区设置6个采样点位同步采集PM_(2.5)样品,采用热光反射法测定样品中各个碳组分(OC1~OC4、EC1~EC3和OP(裂解碳))的含量,并计算得到OC、EC、CharEC和Soot-EC,以定性识别大气颗粒物中碳组分的来源.结果表明,夏季PM_(2.5)中OC平均浓度为(7.5±3.0)μg·m-3,占PM_(2.5)的11.7%±4.1%;而冬季相比于夏季OC的浓度和占比均有增加,分别为(13.1±7.0)μg·m-3和13.9%±2.8%.夏季和冬季EC浓度分别为(4.0±1.8)μg·m-3、(4.3±2.4)μg·m-3,占PM_(2.5)的6.1%±2.0%和4.6%±1.2%.OC与EC的相关性在夏季(r=0.83,p0.01)和冬季(r=0.96,p0.01)均显著,而冬季CharEC与OC(r=0.94,p0.01)、EC(r=0.98,p0.01)相关性明显高于夏季(OC:r=0.44,p0.01;EC:r=0.45,p0.01).PM_(2.5)中OC/EC平均值在夏季和冬季分别为1.9和3.0,估算得到夏季SOC为(2.6±1.4)μg·m-3,占OC的33.5%±13.6%;冬季为(3.5±2.5)μg·m-3,占OC的26.6%±12.0%.夏季Char-EC/Soot-EC为6.5,高于冬季(4.9),并且空间差异性显著(t检验,p0.05).正定矩阵因子模型(PMF)解析结果表明,天津市区大气PM_(2.5)中碳组分主要有4类来源:燃煤及生物质排放混合源、柴油车、汽油车、道路尘,对夏季PM_(2.5)中碳组分分担率分别为35.4%、16.4%、20.5%、14.4%;对冬季碳组分分担率分别为41.3%、15.5%、18.1%、16.3%.可见,燃煤和机动车是天津市区PM_(2.5)中碳组分的主要来源.  相似文献   

4.
为研究沈阳市冬季PM2.5和水溶性离子的污染特征,使用URG-9000D在线监测系统于2018年冬季对大气颗粒物和气体组分进行连续采样.结果表明,采样期间沈阳市PM2.5的平均质量浓度为80.67 μg·m-3,总水溶性离子质量浓度变化范围为2.68~132.79 μg·m-3.与清洁天相比,污染天NO3-、SO42-和NH4+(SNA)占比明显增加,占到PM2.5的43.7%.静稳天气时SO2短时间内的迅速累积使得沈阳市冬季大气PM2.5有暴发性增长现象.Pearson相关性分析可知,SNA、Cl-与PM2.5之间的相关系数均达0.78以上,表明沈阳市冬季PM2.5的主要贡献组分为SNA和Cl-.PMF源解析表明沈阳市冬季污染物来源主要包括二次反应源、燃煤和生物质燃烧源以及扬尘源.  相似文献   

5.
为探究遵义市PM2.5中水溶性离子的污染特征及来源,于2018年6月~2019年5月采集了遵义市两个采样点共120个PM2.5样品,并利用离子色谱法对样品中8种水溶性离子进行了分析。结果表明:采样期间,遵义市PM2.5平均值为47.6±19.3 μg/m3,呈现冬春高、夏秋低的季节变化特征;8种水溶性离子平均质量浓度顺序为SO42- > NO3- > NH4+ > Ca2+ > K+ > Cl- > Na+ > Mg2+,平均值为13.74 μg/m3,水溶性离子质量浓度的季节变化与PM2.5变化趋势相似;SO42-、NO3-、NH4+(SNA)是PM2.5中主要水溶性离子,占比为83.8%,说明遵义市大气PM2.5二次污染较严重;相关性分析表明,PM2.5中NH4+主要以(NH42SO4、NH4HSO4的形式存在,部分以NH4NO3的形式存在;[NO3-]/[SO42-]小于1,表明固定源为主要污染源;主成分分析结果表明,PM2.5中水溶性离子主要来源于燃煤、交通混合源、土壤、建筑扬尘及农业源。  相似文献   

6.
为了快速分析天津市区冬季以及重污染过程中PM2.5的化学组成特征及来源,本研究于2017年1月利用在线监测仪器快速采集了天津市区环境受体中PM2.5及其化学组分的小时数据,并通过PMF(positive matrix factorization,正定矩阵因子分解法)模型解析了天津市区2017年1月及重污染过程中PM2.5的主要贡献源类,分析了重污染过程中排放源的变化趋势.结果表明:2017年1月天津市区PM2.5浓度为6.0~449.0 μg·m-3,平均值为153.3 μg·m-3.NO3-、SO42-、NH4+是PM2.5中水溶性离子的主要组分,三者之和占水溶性离子总量的88.3%.NH4+与Cl-、NO3-、SO42-均表现出显著的正相关性(r=0.82,0.95,0.97;p<0.01).NO3-和SO42-r=0.90;p<0.01),Ca2+与Mg2+r=0.65;p<0.01)均表现出显著的相关性,说明它们分别具有较高的同源性.OC和EC也是PM2.5的重要组成部分,两者之和占PM2.5质量浓度的20.4%.重污染过程中,PM2.5及其主要离子的浓度显著的增加(p<0.01),并存在较高的二次离子生成.PMF解析结果表明,二次源类是天津市区2017年1月PM2.5的首要源类,分担率为38.1%,其次为机动车源(分担率为25.6%)、燃煤源(分担率17.1%)、扬尘(分担率10.1%)和生物质燃烧(分担率9.1%).重污染过程中,二次源是PM2.5的主要贡献源类,分担率达到39.3%;说明重污染期间存在显著的二次转化及二次粒子的积累过程.重污染发生演变过程中,二次源、机动车源和燃煤源对PM2.5贡献表现出显著增加的趋势,而扬尘和生物质燃烧的贡献则没有显著增加.  相似文献   

7.
张伟  姬亚芹  张军  张蕾  王伟  王士宝 《环境科学》2017,38(12):4951-4957
为了解辽宁省典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,分别于2014年和2016年采集了鞍山市和盘锦市道路扬尘样品,利用再悬浮采样器将其悬浮到滤膜上,用离子色谱仪分析了其中的水溶性无机离子组分,分别用相关分析法和比值法分析了其污染特征,用主成分法初步解析了其主要污染源.结果表明,盘锦市和鞍山市8种水溶性无机离子分别占道路扬尘PM_(2.5)的5.83%±3.34%和5.84%±1.15%.盘锦市NH_4~+与SO_4~(2-)和NO_3~-的结合方式主要为(NH_4)2SO_4和NH_4NO_3,鞍山市NH_4~+与SO_4~(2-)和NO_3~-的主要结合方式为NH_4HSO_4和NH_4NO_3.盘锦市和鞍山市道路扬尘PM_(2.5)中NO_3~-/SO_4~(2-)的均值分别为0.52±0.55和0.46±0.13,表明固定源(燃煤)对其道路扬尘PM_(2.5)的影响较显著.盘锦市道路扬尘PM_(2.5)主要来源于生物质燃烧源、海盐粒子、建筑水泥尘和机动车尾气;鞍山市道路扬尘PM_(2.5)主要来源于燃煤源、生物质燃烧源、海盐粒子和钢铁冶炼尘.  相似文献   

8.
兰州城区大气PM2.5污染特征及来源解析   总被引:2,自引:5,他引:2  
王新  聂燕  陈红  王博  黄韬  夏敦胜 《环境科学》2016,37(5):1619-1628
为探究兰州城区PM_(2.5)的污染特征及其来源,分别在兰州市城关区和西固区设置PM_(2.5)采样点,于2013年10月(非采暖期)和12月(采暖期)采集样品并进行分析,得到了PM_(2.5)及其16种化学组成的质量浓度.结果表明,兰州城区PM_(2.5)污染水平较高,平均质量浓度为129μg·m~(-3).样品无机元素平均质量浓度为:SCaFeAlMgPbZnMnTiCu,其中S、Ca、Fe、Al的质量浓度在1μg·m~(-3)以上,是主要元素组分;样品各无机元素质量浓度表现为采暖期高于非采暖期,城关区高于西固区.样品水溶性离子平均质量浓度为:SO~(2-)_4NO~-_3NH~+_4Cl~-K~+Na~+,其中SO~(2-)_4、NO~-_3、NH~+_4的质量浓度在10μg·m~(-3)以上,是主要离子组分;样品各水溶性离子质量浓度表现为采暖期高于非采暖期,西固区高于城关区.富集因子(EF)分析结果表明,元素Al、Ca、Mg、Ti的EF值均小于1以自然来源为主;元素Cu、Pb、S、Zn的EF值显著大于10,表明这4种元素在PM_(2.5)中高度富集,且主要源于人为活动造成的污染.主成分分析结果表明,交通排放源、生物质燃烧源、土壤源和二次粒子对兰州城区大气PM_(2.5)贡献显著.  相似文献   

9.
为探究南京江北新区PM2.5中水溶性离子的季节特征和来源,于2019年共采集了113个有效PM2.5样品.用称重法和离子色谱法分别测定出PM2.5和10种水溶性离子的质量浓度,并使用PMF源解析法对其进行来源解析.结果表明,观测期间南京江北新区PM2.5和水溶性离子年平均浓度分别为(78.34±29.64)和(35.68±18.30)μg·m-3,其四季变化趋势相同,冬季浓度高,夏季浓度低.10种水溶性离子中NO3-、SO42-和NH4+的浓度远远高于其他离子,其在总离子中的含量高达89.9%.南京江北新区四季PM2.5中NH4+主要与HSO4-和NO3-结合存在.硫氧化率(SOR)和氮氧化率(NOR)的年均值分别为0.53和0.28,说明观测期间大气中氮硫的二次生成率较高.南京江北新区PM2.5中水溶性离子主要来源为二次转化、海盐和扬尘.  相似文献   

10.
常州市大气PM2.5中PAHs污染特征及来源解析   总被引:1,自引:2,他引:1  
2016年1~8月期间,在常州市采集到55个大气细颗粒物PM_(2.5)样品,采用气相色谱-质谱联用仪测定其中17种PAHs的含量.结果表明,冬、春、夏季PAHs的季均浓度分别为140.24、41.42和2.96 ng·m~(-3),冬季污染较严重,且以4~6环中高分子量化合物为主.Ba P日均浓度平均值3.64 ng·m~(-3),超标日占总采样天数的41%.PAHs浓度与气温(相关系数-0.643)和能见度(相关系数-0.466)显著负相关,与大气压呈显著正相关(相关系数0.544),而与风速、相对湿度相关性较差.受昼夜温差、大气层结和污染源变化等因素影响,夜间PAHs浓度高于白天.气团后向轨迹模型分析表明,常州PM_(2.5)中PAHs主要受当地排放源和短距离传输的影响,长距离传输影响小(仅占11%).特征比值法分析发现,PAHs主要来源于燃煤、机动车尾气和生物质燃烧.利用超额终生致癌风险(ILCR)模型评估PAHs通过呼吸暴露途径对人体健康的影响,结果表明:成人的ILCR值高于儿童,冬季和春季人群的ILCR值略高于风险阈值,夏季则不明显.  相似文献   

11.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大.  相似文献   

12.
于2015年10月、12月和2016年3月、8月在重庆大学A区采集秋、冬、春、夏4个季节PM2.5样品,观察其微观形貌,分析含碳气溶胶及其碳组分的浓度水平,并探讨其季节变化及进行来源解析.结果表明,重庆沙坪坝区PM2.5中有机碳(OC)、元素碳(EC)、烟灰(char)和烟炱(soot)的年均质量浓度分别为20.66、6.16、5.42和0.74 μg·m-3.OC季节变化显著,冬季最高,夏季最低;EC秋季最高,冬季最低,但与其它季节相差不大;char表现为秋季 > 春季 > 冬季 > 夏季;soot表现为秋季 > 夏季 > 春季 > 冬季.正定矩阵因子(PMF)解析出3个因子,分别代表生物质/煤燃烧和道路扬尘的混合源(52.7%)、汽油机动车排放源(22.9%)和柴油机动车排放源(24.4%).机动车尾气是秋、春和夏3个季节含碳气溶胶的主要来源,冬季主要受煤炭/生物质燃烧和道路扬尘混合源的影响.秋季污染事件可能是因为本地及周边城市汽油车通行量增加,冬季污染事件可能是本地煤炭/生物质燃烧排放增加和周边农村地区输入的共同作用,春季污染事件可能与来自西北方向的沙尘长距离传输有关.  相似文献   

13.
在哈尔滨市2014年1—3月的供暖期间对城区、郊区及周边农村地区的室内外PM2.5样品进行了同时采集,分析了样品中碳质组分、水溶性离子及无机元素后,通过颗粒物热力学模型计算了颗粒物原位酸度,并通过基于标记的正矩阵分解(PMF)模型对室内外颗粒物的来源进行了表征.计算结果表明,3个地点室外PM2.5原位酸度均低于室内,且室内外颗粒物原位酸度均为市区最高.PMF结果表明,哈尔滨市区、郊区及农村地区二次源对室外PM2.5的贡献均排第3位.交通源对市区及郊区的贡献在16%~20%,对于农村地区则是最弱的影响因素.生物质燃烧是农村地区室内外PM2.5的首要来源;燃煤和工业排放则是市区室内外PM2.5的主要来源;工业排放是郊区室外PM2.5的首要来源,与郊区的石化及金属工业有密切联系.因此,为提升哈尔滨市供暖期的空气质量,在进行农村散煤与生物质燃烧治理,推进农村地区清洁能源利用的同时,应多措并举注重城市交通状况改善和促进燃煤锅炉与工业超低排放技术的升级改造,促进区域协同治理.  相似文献   

14.
邯郸市PM_(2.5)中水溶性无机离子污染特征及来源解析   总被引:3,自引:1,他引:3  
本研究通过对邯郸市环境空气中PM2.5样本进行采集和成分检测,分析了该地区PM2.5中水溶性无机离子的污染特征,并结合气象要素(风速、温度)、气态污染物(O3、NO2、SO2、CO)、SOR(硫氧化率)、NOR(氮氧化率)对其主要来源进行了解析.研究结果表明:总水溶性无机离子(TWSII)浓度季节变化特征明显,秋、冬季高于春、夏季.SO2-4、NO-3、NH+4是PM2.5中主要的水溶性无机离子,在TWSII中所占的比例为夏(93.2%)冬(85.6%)秋(85.5%)春(84.0%).春、夏、秋三季PM2.5呈酸性,冬季显碱性.此外还分析得到,SO2-4在四季中均以(NH4)2SO4的形式存在.NO-3在冬季以NH4NO3的形式存在,其余季节中以NH4NO3、HNO3等共存.绝大部分Cl-在冬季以NH4Cl的形式存在,其它季节中以NH4Cl、KCl等的形式存在.均相反应是SO2-4的主要生成途径,夏、冬季也伴随有非均相反应.NO-3的生成以均相反应为主(春、夏、秋),在冬季均相反应与非均相反应同时存在.应用因子分析法解析出4个主因子,其中,工业、燃煤、交通、生物质燃烧等综合源是PM2.5中水溶性无机离子的主要来源.  相似文献   

15.
成都城区PM2.5季节污染特征及来源解析   总被引:16,自引:0,他引:16  
于2009—2010年各季节典型月在成都城区采集了大气PM2.5样品,对PM2.5的质量浓度及其主要化学成分(含碳组分、水溶性无机离子和元素)进行了测定. 结果显示:成都城区PM2.5平均质量浓度高达(165.1±85.1)μg·m-3,是国家环境空气质量标准年均PM2.5限值的4.7倍. OC、EC和水溶性二次离子(SO42-,NO3-和NH4+)的平均浓度分别为(22.6±10.2)μg·m-3,(9.0±5.4)μg·m-3和(62.8±44.3)μg·m-3,分别占PM2.5浓度的13.7%、5.5%和38.0%. PM2.5及其主要化学成分浓度季节特征明显,即秋冬季高于春夏季. 利用正交矩阵因子分析(PMF)对成都城区PM2.5的来源进行解析,结果表明,土壤尘及扬尘、生物质燃烧、机动车源和二次硝酸盐/硫酸盐的贡献率分别为14.3%、28.0%、24.0%和31.3%. 就季节变化而言,生物质燃烧源贡献率在四个季节均维持在较高水平;土壤尘及扬尘的贡献率在春季显著提高;机动车源的贡献率在夏季中表现突出;而二次硝酸盐/硫酸盐的贡献率在秋冬季中则最为显著.  相似文献   

16.
利用2015—2016年西南涡个例数据与同期的细颗粒物(PM2.5)浓度数据进行时空匹配,对比分析西南涡过境前后四川盆地PM2.5浓度变化,并结合温度、湿度、风等气象要素及逆温特征,深入研究西南涡对PM2.5污染的影响机理.结果表明:①2015—2016年四川盆地共182个西南涡,其中,干涡72个(多集中在春季),弱降水涡75个(多集中在春季和冬季),强降水涡35个(多集中在夏季).②总体而言,干涡过境使四川盆地PM2.5浓度增加,降水涡使PM2.5浓度减小,强降水涡的削减作用强于弱降水涡.全年来看,干涡过境使四川盆地PM2.5浓度增加10.52%,强、弱降水涡过境分别使PM2.5浓度减小29.72%、9.71%.③除降水外,3类西南涡对PM2.5影响的主导气象要素和逆温条件为相对湿度、风速和逆温层底高.而主导季节差异的气象要素和逆温条件各异:干涡的主导因素是温度垂直变化和逆温强度,在温度随高度递减和逆温强度较小的春季和夏季,对PM2.5浓度的增幅减小(甚至有削减作用);弱降水涡的主导因素是湿度和风速、逆温强度和逆温层厚度,春季其过境时湿度和风速最小,逆温强度和逆温厚度仅次于冬季,甚至使PM2.5浓度增加;强降水涡的主导因素是风速、湿度和逆温层底高,夏季其过境时风速和低层湿度最小,逆温层底高最低,对PM2.5的削减作用远弱于其他季节.  相似文献   

17.
基于福州市区2015年2月—2016年1月间的大气PM_(2.5)监测数据,综合运用HYSPLIT后向轨迹模式、潜在源贡献因子法(WPSCF)与浓度权重轨迹分析(WCWT)等方法,探讨了福州市区冬、春季PM_(2.5)污染特征和典型污染过程成因,总结了气象因子和污染来源的季节性差异.研究期间,冬、春季是福州市区PM_(2.5)污染的主要季节,福州市区不同类型站点的PM_(2.5)浓度在冬、春季污染发生时均呈现出整体升高的特点,但浓度日变化却存在季节性差异,冬季无显著日变化,春季则表现为单峰单谷特征.福州市区春季主要受锋前暖区和高压后部等天气系统影响,大气扩散条件差,PM_(2.5)极易在不利的气象条件下累积,福建沿海地区是其PM_(2.5)污染的主要潜在源区;冬季污染易受高压天气系统作用,盛行偏北风,长江三角洲地区的污染物输入会对福州市区空气质量产生较大影响,长江三角洲、浙江东南沿海、福建北部是其PM_(2.5)污染的主要潜在源区.  相似文献   

18.
2018年6月7日—7月10日,利用在线气体和气溶胶成分监测仪(IGAC)在珠海市沿海站对PM2.5中水溶性离子浓度和气体开展连续观测分析.结果发现,夏初沿海地区水溶性离子处于较低水平,SO42-、NH4+、NO3-、Cl-、Na+、Ca2+、K+、Mg2+浓度分别为4.78、1.87、1.16、0.92、0.37、0.27、0.11和0.11μg·m-3,其中,代表海洋来源的Na+和Cl-浓度与珠江口东海岸的深圳沿海地区相当. Na+和Cl-呈明显的白天高、夜晚低的日变化特征,与海盐排放在海陆风环流下的输送有关.基于天气形势分析、气团来源分析和PMF来源解析方法研究了观测期间发生的两次污染过程,一次是受到强热带风暴外...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号