首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background, Aims and Scope This research attempted to identify the dominant factors simultaneously affecting the airborne concentrations of five air pollutants with principal component analysis and to determine the meteorologically related parameters that cause severe air-pollution events. According to the definition of subPSI and PSI values through the U.S. EPA, the historical raw data of five criteria air pollutants, SO2, CO, O3, PM10 and NO2, were calculated as daily subPSI values. In addition to the airborne concentrations, this study simultaneous collected the surface meteorological parameters of the Taipei meteorological station, established by the Central Weather Bureau. Methods Principal component analysis was conducted to screen severe air pollution scenarios for five air pollutants: SO2, CO, O3, PM10 and NO2. The concentrations of various air pollutants measured at 17 air-quality stations in northern Taiwan from 1995 to 2001 were transformed into daily subPSI values. The correlation analysis of the five air pollutants and four meteorological parameters (wind speed, temperature, mixing height and ventilation rate) were included in this research. After screening severe air pollution scenarios, this study recognized the synoptic patterns easily causing the severe air-pollution events. Results and Discussion Analytical results showed that the eigenvalues of the first two principal components for SO2, CO, O3, PM10 and NO2 were greater than 1. The first component of five air pollutants explained 64, 64, 67, 76 and 63% of subPSI variance for SO2, CO, O3, PM10 and NO2, respectively. Only the correlation coefficient of NO2 and CO had statistically significant positive values (0.82); other pollutant pairs presented medium (0.4 to 0.7) or low (0 to 0.4) positive values. The correlation coefficients for air pollutants and three meteorological parameters (wind speed, mixing height and ventilation index) were medium or low negative values. In northern Taiwan, spring was most likely induced high concentrations and the component scores of the first component for SO2, CO, PM10 and NO2; summer was the worst season that caused high O3 episodes. Consequently, the analytical results of factor loadings for the first principal component and emission inventory of various sources revealed that mobile sources were dominant factors affecting ambient air quality in northern Taiwan. Conclusion According to the results of principal component analysis for the five air pollutants, the first two of 17 components were cited as major factors and explained 71% of subPSI variance. Based on the inventory of NOx emissions and the isopleth diagram of factor loading for the first component, mobile sources in the southwest Taipei City accounted for the highest factor loading values and emission inventory values. Synoptic analysis and principal component analysis demonstrated that three types of weather patterns (high-pressure recirculation, prefrontal warm sector and the southwesterly wind system) easily caused the severe air-pollution scenarios. In summary, if severe air-pollution days occurred, the average meteorological parameters experienced adverse conditions for diffusing air pollutants; that is, the average values of wind speed, mixing height and ventilation index were lower than 2.1 ms-1, 360 m and 800 m2s-1, respectively. If one of the three synoptic patterns were to occur in combination with adverse meteorological conditions, severe air-pollution events would be developed. Recommendation and Outlook By utilizing synoptic patterns, this work found three weather systems easily caused severe air-pollution events over northern Taiwan. Analytical results showed, respectively, the wind speed and mixing height were less than 2.1 m/s and 360 m during severe air-pollution events.  相似文献   

2.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   

3.
Yuan SY  Liu C  Liao CS  Chang BV 《Chemosphere》2002,49(10):1295-1299
Concentrations and microbial degradation rates were measured for eight phthalate esters (PAEs) found in 14 surface water and six sediment samples taken from rivers in Taiwan. The tested PAEs were diethyl phthalate (DEP), dipropyl phthalate (DPP), di-n-butyl phthalate (DBP), diphenyl phthalate (DPhP), benzylbutyl phthalate (BBP), dihexyl phthalate (DHP), dicyclohexyl phthalate (DCP), and di-(2-ethylhexyl) phthalate (DEHP). In all samples, concentrations of DEHP and DBP were found to be higher than the other six PAEs. DEHP concentrations in the water and sediment samples ranged from ND to 18.5 μg/l and 0.5 to 23.9 μg/g, respectively; for DBP the concentration ranges were 1.0–13.5 μg/l and 0.3–30.3 μg/g, respectively. Concentrations of DHP, BBP, DCP and DPhP were below detection limits. Under aerobic conditions, average degradation half-lives for DEP, DPP, DBP, DPhP, BBP, DHP, DCP and DEHP were measured as 2.5, 2.8, 2.9, 2.6, 3.1, 9.7, 11.1 and 14.8 days, respectively; under anaerobic conditions, respective average half-lives were measured as 33.6, 25.7, 14.4, 14.6, 19.3, 24.1, 26.4 and 34.7 days. In other words, under aerobic conditions we found that DEP, DPP, DBP, DPhP and BBP were easily degraded, but DEHP was difficult to degrade; under anaerobic conditions, DBP, DPhP and BBP were easily degraded, but DEP and DEHP were difficult to degrade. Aerobic degradation rates were up to 10 times faster than anaerobic degradation rates.  相似文献   

4.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

5.
This study aims to design a dry deposition chamber and to measure ozone depletion over the Taichung field soil. This study seeks to verify the phenomena by an experimental and mathematical model. It is demonstrated that interfacial mass transfer resistances of ozone dry deposition involve reactive resistance (R(sr)) and kinetic resistance (R(sk)). It reveals the chemical reaction (O3 + NO --> NO2) to produce the reactive resistance, and verifies that the interfacial mass transfer resistances depend on nitrogen oxide emission and soil temperature. It shows that the interfacial mass transfer resistances are reduced with increasing soil temperature (T(S)). The model profiles are smaller than the observed data within a relative error of 15%. The reactive resistance decreases exponentially with increasing soil temperature; R(sr)(-1) (cm x sec(-1)) = 0.0001 exp (0.1455T(S)). The kinetic resistance decreases linearly with increasing soil temperature; R(sk)(-1)(cm x sec(-1)) = 0.0108T(S) + 1.4012. This model is more accurate with higher soil temperature and larger ozone concentration. Results are consistent with thermodynamics and reaction kinetics. Ozone dry deposition over agricultural soil causes conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).  相似文献   

6.
Phthalate exposure in pregnant women and their children in central Taiwan   总被引:2,自引:0,他引:2  
Lin S  Ku HY  Su PH  Chen JW  Huang PC  Angerer J  Wang SL 《Chemosphere》2011,82(7):947-955
Phthalate exposure was found to be associated with endocrine disruption, respiratory effects, reproductive and developmental toxicity. The intensive use of plastics may be increasing the exposure to phthalates in Taiwanese population, particularly for young children.We studied phthalate metabolites in pregnant women and their newborns in a prospective cohort from a medical center in Central Taiwan. One hundred maternal urine samples and 30 paired cord blood and milk samples were randomly selected from all of participants (430 pregnant women). Eleven phthalate metabolites (MEHP, 5OH-MEHP, 2cx-MEHP, 5cx-MEPP, 5oxo-MEHP, MiBP, MnBP, MBzP, OH-MiNP, oxo-MiNP, and cx-MiNP) representing the exposure to five commonly used phthalates (DEHP, di-isobutyl phthalate (DiBP), DnBP, BBP, DiNP) were measured in urine of pregnant women, cord serum and breast milk after delivery, and in urine of their children. Exposure was estimated with excretion factors and correlation among metabolites of the same parent compound. Thirty and 59 urinary samples from 2 and 5 years-old children were randomly selected from 185 children successfully followed.Total urinary phthalate metabolite concentration (geometric mean, μg L−1) was found to be higher in 2-years-olds (398.6) and 5-years-olds (333.7) than pregnant women (205.2). Metabolites in urine are mainly from DEHP. The proportion of DiNP metabolites was higher in children urine (4.39 and 8.31%, ages 2 and 5) than in adults (0.83%) (p < 0.01). Compared to urinary levels, phthalate metabolite levels are low in cord blood (37.45) and milk (14.90). DEHP metabolite levels in women’s urine and their corresponding cord blood are significantly correlated. Compared to other populations in the world, DEHP derived metabolites in maternal urine were higher, while phthalate metabolite levels in milk and cord blood were similar. The level of phthalate metabolites in milk and cord blood were comparable to those found in other populations. Further studies of health effects related to DEHP and DiNP exposure are necessary for the children.  相似文献   

7.
中国台湾地区土壤及地下水污染整治基金管理会自2001年成立以来,不断完善管理架构和管理体系,发布相关领域的法律法规、行政规则和公告,有效运行污染整治基金的财务筹措和使用等经济管理机制。开展了一系列行之有效的预防、监测、调查、评估等管理工作,为污染场地的识别和筛选奠定了坚实的基础。对于污染场地的整治工作,采用标准和风险评估相结合的验收方式,推行场地可持续利用的绿色修复技术。重点研究台湾地区土壤及地下水污染整治工作的管理政策、模式和措施,总结相关经验,为中国土壤及地下水污染防治工作提供借鉴和参考。  相似文献   

8.
Hourly data of PM10 concentration collected from an air quality-monitoring network has been analyzed over Taiwan from 1994 to 1999. Fourteen sites from 72 monitoring stations were selected to evaluate the spatial and seasonal variations in the regions of north, southwest, south, east and National Park. The selected monitoring sites are located in a suburban environment, except Nantz and Linyuan that are located in industrial areas. Moreover, Yangming and Hengchuen are located in National Park. Spatial and seasonal variations of PM10 concentrations are rather large over Taiwan. Annual average in south is approximately six times higher than in National parks. In northern sites, the highest concentration occurs in March–May, which is attributed to the occurrence of dust storms in arid regions of central Asia and the transport of dust by northeasterly monsoon. A marked seasonal variation of PM10 concentrations can be observed both in southwestern and southern regions. The pattern is characterized by high concentrations in winter and low in summer. Appearance of the highest monthly PM10 concentration in winter of south may be in part due to the lowest number of monthly precipitation days and low temperature, both of which occurred in winter. The frequency of PM10 daily mean concentration for exceeded 150 μg m−3 is 15% during winter in south, which reflects the serious pollution problem there. Monitoring sites in National Park are representatives of remote environments, but the PM10 concentrations are still affected by the dust storms and human activities.  相似文献   

9.
In this study, ambient air samples from different atmospheric environments were examined for both PBDE and PCDD/F characteristics to verify that combustion is a significant PBDE emission source. The mean ± SD atmospheric PBDE concentrations were 165 ± 65.0 pg Nm−3 in the heavy steel complex area and 93.9 ± 24.5 pg Nm−3 in the metals complex areas, 4.7 and 2.7 times higher than that (35.3 ± 15.5 pg Nm−3) in the urban areas, respectively. The statistically high correlation (r = 0.871, p < 0.001) found between the atmospheric PBDE and PCDD/F concentrations reveals that the combustion sources are the most likely PBDE emission sources. Correspondence analysis shows the atmospheric PBDEs of the heavy steel and metals complex areas are associated with BDE-209, -203, -207, -208, indicative of combustion source contributions. Furthermore, the PBDEs in urban ambient air experience the influence of the evaporative releases of the commercial penta- and octa-BDE mixtures, as well as combustion source emissions. By comparing the PBDE homologues of indoor air, urban ambient air, and stack flue gases of combustion sources, we found that the lighter brominated PBDEs in urban ambient air were contributed by the indoor air, while their highly brominated ones were from the combustion sources, such as vehicles. The developed source identification measure can be used to clarify possible PBDE sources not only for Taiwanese atmosphere but also for other environmental media in other countries associated with various emission sources in the future.  相似文献   

10.
Based on environmental monitoring data in 93 major cities and meteorological records at 398 weather stations in China from 1981 to 2007, total suspended particle (TSP) concentration, the intensity of dustfall, and sand and dust storm frequency (Fd) were analysed. During the past 27 years, the annual average TSP concentration (CTSP) in 93 cities was 402 μg m?3. Annual average CTSP decreased from the north to the south and from inland to the coast areas with a peak value of 628.8 μg m?3 in Lanzhou. In the 1980s, 1990s and 2000s, annual average CTSP was 628.7, 319.2, and 250.1 μg m?3, respectively. Annual average intensity of dustfall (Id) was 240.5 t km?2 a?1, decreased from northern to southern China and from inland to the coast areas with the maximum value of 717.2 t km?2 a?1 in Baotou. In the 1980s, 1990s and 2000s, annual average Id was 334.8, 220.9, 146 t km?2 a?1 respectively. Annual average Id in the Loess Plateau region was commonly higher than 200 t km?2 a?1. The annual average Fd decreased from arid regions in northwestern China to humid areas in southeastern China with two sand and sand storm centers existing in Xinjiang Taklamakan Desert and western Inner Mongolia. The annual average Fd in the 1980s, 1990s, 2000s was 16, 8, 6 days respectively, decreased steadily from 18 days in 1981–5 days in 2007. Annual average Id had a positive linear relation to annual average CTSP (R2 = 0.96). Annual average Fd had a positive relation with annual average CTSP (R2 = 0.97) as well as annual average Id (R2 = 0.94). TSP was the chief pollutant influencing Air Pollution Index (API) in northern China in spring and winter seasons. Sand and dust storm might be a major factor affecting the temporal variability and spatial distribution of TSP and dustfall in China.  相似文献   

11.
The species of copper and zinc, such as bioexchangeable, skeletal, easily reducible (Fe and Mn oxides), moderately reducible (crystalline Mn oxide), organic combined with sulfides, and detritus with minerals, in mud and sand, separated from the surface Antarctic Ocean and the Taiwan Erhjin Chi coastal (including river and estuarine) sediments, have been analyzed by sequential leaching methods. Results show that in the Antarctic Ocean sediments, high concentrations of total copper (128 mg/kg) and zinc (458 mg/kg) were found in the high mud (99.09%) content samples compared with the low concentrations of total copper (83.8 mg/kg) and zinc (288 mg/kg) in low mud (51.69%) content samples. High concentrations of copper, zinc, manganese and iron are possibly due to the characteristics of manganese nodules, in which the species of copper and zinc are mainly contained in the crystalline Mn oxide phase. In the Taiwan Erhjin Chi coastal sediments, the total copper and zinc concentrations in mud and sand vary with season and location. High values were generally observed in the river sediments during the dry season, and low values were in the estuarine and coastal sediments during the heavy rainy season. High percentages of copper (as high as 49.4%) and zinc (as high as 76.7%) in mud and sand were in the bioexchangeable phase including the skeletal phase. This result might be correlated with the problems arising from human impact on copper and zinc as well as sewage pollution in Taiwan. In the organic combined phase, biogenic particulate matter related to higher primary productivity in the Antarctic Ocean is also discussed.  相似文献   

12.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have recently received attention due to their widespread contamination of the environment. PFOS and PFOA are stable in the environment and resistant to metabolism, hydrolysis, photolysis and biodegradation. PFOS and PFOA have been found in human blood and tissue samples from both occupationally exposed workers and the general worldwide population. This study aimed to determine the background levels of PFOS and PFOA in the Taiwanese population, investigate related factors, and compare exposure in Taiwan to that in other countries. The concentration of PFOS in the 59 serum samples collected from the general population in Taiwan ranged from 3.45 to 25.65 ng mL−1 (median: 8.52), and the concentration of PFOA ranged from 1.55 to 7.69 ng mL−1 (median: 3.22). There was a significant positive correlation (r = 0.51; p < 0.0001) between PFOS and PFOA concentrations. Males had higher concentrations of PFOA and PFOS than females. PFOS levels in serum increased with age. This study is the first investigation to reveal the PFOS and PFOA levels of serum samples in the general population of Taiwan. The levels of PFOS and PFOA in Taiwanese serum samples were comparable with those from other countries (PFOS: 5.0–35 ng mL−1, PFOA: 1.5–10 ng mL−1).  相似文献   

13.
The number of ultrafine particles may be a more health relevant characteristic of ambient particulate matter than the conventionally measured mass. Epidemiological time series studies typically use a central site to characterize human exposure to outdoor air pollution. There is currently very limited information how well measurements at a central site reflect temporal and spatial variation across an urban area for particle number concentrations (PNC).The main objective of the study was to assess the spatial variation of PNC compared to the mass concentration of particles with diameter less than 10 or 2.5 μm (PM10 and PM2.5).Continuous measurements of PM10, PM2.5, PNC and soot concentrations were conducted at a central site during October 2002–March 2004 in four cities spread over Europe (Amsterdam, Athens, Birmingham and Helsinki). The same measurements were conducted directly outside 152 homes spread over the metropolitan areas. Each home was monitored during 1 week. We assessed the temporal correlation and the variability of absolute concentrations.For all particle indices, including particle number, temporal correlation of 24-h average concentrations was high. The median correlation for PNC per city ranged between 0.67 and 0.76. For PM2.5 median correlation ranged between 0.79 and 0.98. The median correlation for hourly average PNC was lower (range 0.56–0.66). Absolute concentration levels varied substantially more within cities for PNC and coarse particles than for PM2.5. Measurements at the central site reflected the temporal variation of 24-h average concentrations for all particle indices at the selected homes across the urban area. A central site could not assess absolute concentrations across the urban areas for particle number.  相似文献   

14.
The development of new sampling devices or strategies to assess the concentration of persistent organic pollutants (POPs) in the environment has increased in the last two decades. In this study, a selective sampling device was used to evaluate the impact of potential local sources of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) and dioxin-like polychlorinated biphenyl (dl-PCBs) emissions on the ambient air levels of such compounds in a town near an important industrial estate. Average concentrations of target compounds of up to 2.5 times for PCDD/Fs and 2 times for dl-PCBs were found to come from the industrial state confirming this area as the main responsible for the majority of such compounds reaching the town.This finding was supported by a PCDD/F and dl-PCB sample profile analysis and a principal component analysis (PCA), which established a direct link between the dioxin-like compounds found in the samples collected in the town and their source.  相似文献   

15.
To quantify the possible sources of the high ambient ozone concentration in the low troposphere over Taiwan, ozone sounding data from a two-year intensive field measurement program conducted in April and early May of 2004 and 2005 in northern Taiwan has been examined. We found that the vertical ozone distributions and occurrence of enhanced ozone in the lower troposphere (below 6 km) mainly resulted from (1)Type NE: the long-range transport of ozone controlled by the prevailing northeasterly winds below 2 km, (2)Type LO: the local photochemical ozone production process, and (3)Type SW: the strong southwest/westerly winds aloft (2–6 km). In the boundary layer (BL), where Asian continental outflow prevails, the average profile for type NE is characterized by a peak ozone concentration of nearly 65 ppb at about 1500 m altitude. For type LO, high ozone concentration with an average ozone concentration greater than 80 ppb was also found in the BL in the case of stagnant atmospheric and sunny weather conditions dominated. For type SW, significant ozone enhancement with average ozone concentration of 70–85 ppb was found at around 4 km altitude. It is about 10 ppb greater than that of the types NE and LO at the same troposphere layer owing to the contribution of the biomass burning over Indochina. Due to Taiwan's unique geographic location, the complex interaction of these ozone features in the BL and aloft, especially features associated with northeasterly and south/southwesterly winds, have resulted in complex characteristics of ozone distributions in the lower troposphere over northern Taiwan.  相似文献   

16.
This investigation studied the concentrations of ambient air total gaseous mercury (TGM) during the rainy periods at the Hung-Kuang traffic sampling site in central Taiwan from May 26 to June 16, 2014. The results were compared with those of a previous study for ambient air TGM during non-rainy daytime and nighttime periods at the Hung-Kuang traffic sampling site, which was conducted during March 21 to July 20, 2012. The observed mean concentration of ambient air TGM was 1.16 ng/m3 during the rainy periods at the Hung-Kuang traffic sampling site. The mean ambient air TGM concentrations were higher in the non-rainy sampling period in daytime than in the rainy sampling period from this study. The mean ratio of non-rainy sampling period in daytime to that of rainy sampling period for ambient air TGM were 3.15. Furthermore, the mean ambient air TGM concentrations were higher in the non-rainy sampling period in nighttime in than in the rainy sampling period for this study. The mean rations for non-rainy sampling period in nighttime to that of the rainy sampling period for ambient air TGM were 2.70. The results obtained in this study also revealed that the ambient air TGM concentrations during the rainy period had the lowest concentrations when compared with the other sampling sites in other world regions.  相似文献   

17.

Spatial variations of Cr, Cu, Hg, Ni, Pb, and Zn in the surface sediments from 34 stations of the Kaohsiung coastal zone southwestern Taiwan were studied to address the current pollution status, sediment quality, and potential ecological risk. The study revealed that the concentrations of sediment metals in Kaohsiung Harbor were alarmingly high compared to the other region of Kaohsiung coast. The concentrations of Cr, Cu, Hg, Ni, Pb, and Zn in the harbor sediments were as high as 351, 247, 1.93, 61.8, 60.9, and 940 mg kg−1, respectively. The current situation of metal pollution was assessed by different pollution indices and results showed moderate to severe enrichment of Cu, Hg, and Zn in the harbor sediments. According to the degree of contamination, pollution load index, and contamination severity index, the sediments from the inner Kaohsiung Harbor show high degree and high severity of metal contamination, while the rest of Kaohsiung coastal areas show uncontaminated or low-level pollution. Results of mean ERM quotient and potential ecological risk index also indicated that the harbor sediments posed a 49% probability of biological toxicity and very high ecological risk. The toxic units indicated that the negative biological effects of the six metals in the harbor sediments were Zn > Cu > Cr > Ni > Hg > Pb. In contrast to Kaohsiung Harbor as a trap where considerable amount of anthropogenic metal loadings accumulated in sediments, low metal concentrations were observed in most Kaohsiung coastal sediments. It probably resulted from the limited fine-grained sediment deposition. In the wave-dominated Kaohsiung coastal zone, fine-grained sediments associated with polluted metals tend to be easily resuspended and transported offshore via waves and wave-induced currents. The results of this study can provide valuable information for river and coastal zone management.

  相似文献   

18.
In 2004 and 2005, the East Tennessee Ozone Study (ETOS) enhanced its regional measurement program with annular denuder systems to quantify sulfur dioxide (SO2) and PM2.5 sulfate (SO42?) at five sampling sites that were representative of the complex terrain and physiographic features of East Tennessee. Intersite spatial variability was more defined for SO2 than for SO42?, which showed a fairly uniform structure in both daytime and nighttime measurements. Pollution roses indicated that two sites may have been influenced by the proximity of SO2 emission sources. The data suggest that SO2 is affected by nearby sources in the study area while the sources of SO42? are regionally distributed.  相似文献   

19.
随着工业化、城镇化的深入推进,二氧化硫、氮氧化物、烟粉尘和挥发性有机物等各类污染物排放到环境中,致使中国大气受到严重污染,给人体的健康、动植物的生长、发育和繁殖等带来负面的影响。为实时监测环境空气质量,建立环境空气质量自动监测站逐渐成为大气污染防治的主要手段。文中以环境空气质量自动监测站为研究对象,提出环境空气质量自动监测站管理与维护面临的问题,探讨相应的解决措施,以期为环境空气质量自动监测站的管理与维护提供参考依据。  相似文献   

20.
盐城市区环境空气污染原因分析及对策建议   总被引:1,自引:0,他引:1  
通过对盐城市区建成空气自动监测站来的数据分析,简要说明了盐城市区环境空气质量下降的原因,并提出了改善城市大气污染的建议措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号